RESUMO
Sorafenib is a multikinase inhibitor widely used in cancer therapy with an antitumour effect related to biological processes as proliferation, migration or invasion, among others. Initially designed as a Raf inhibitor, Sorafenib was later shown to also block key molecules in tumour progression such as VEGFR and PDGFR. In addition, sorafenib has been connected with key signalling pathways in cancer such as EGFR/EGF. However, no definitive clue about the molecular mechanism linking sorafenib and EGF signalling pathway has been established so far. Our data in HeLa, U2OS, A549 and HEK293T cells, based on in silico, chemical and genetic approaches demonstrate that the MEK5/ERK5 signalling pathway is a novel target of sorafenib. In addition, our data show how sorafenib is able to block MEK5-dependent phosphorylation of ERK5 in the Ser218/Tyr220, affecting the transcriptional activation associated with ERK5. Moreover, we demonstrate that some of the effects of this kinase inhibitor onto EGF biological responses, such as progression through cell cycle or migration, are mediated through the effect exerted onto ERK5 signalling pathway. Therefore, our observations describe a novel target of sorafenib, the ERK5 signalling pathway, and establish new mechanistic insights for the antitumour effect of this multikinase inhibitor.
Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Suscetibilidade a Doenças , Fator de Crescimento Epidérmico/metabolismo , Citometria de Fluxo , Humanos , Proteína Quinase 7 Ativada por Mitógeno/química , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/química , Relação Estrutura-AtividadeRESUMO
Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5-KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.
RESUMO
Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.
Assuntos
Ácido Aspártico/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspartato Aminotransferase Citoplasmática/metabolismo , Aspartato Aminotransferase Mitocondrial/metabolismo , Ácido Aspártico/farmacologia , Carcinoma de Células Renais/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glutamina/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/enzimologia , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/antagonistas & inibidores , Neoplasias/patologia , Oxirredução , Proteínas Supressoras de Tumor/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genéticaRESUMO
OBJECTIVES: To fully clarify the role of Mitogen Activated Protein Kinase in the therapeutic response to Sorafenib in Renal Cell Carcinoma as well as the cell death mechanism associated to this kinase inhibitor, we have evaluated the implication of several Mitogen Activated Protein Kinases in Renal Cell Carcinoma-derived cell lines. MATERIALS AND METHODS: An experimental model of Renal Cell Carcinoma-derived cell lines (ACHN and 786-O cells) was evaluated in terms of viability by MTT assay, induction of apoptosis by caspase 3/7 activity, autophagy induction by LC3 lipidation, and p62 degradation and kinase activity using phospho-targeted antibodies. Knock down of ATG5 and ERK5 was performed using lentiviral vector coding specific shRNA. RESULTS: Our data discard Extracellular Regulated Kinase 1/2 and 5 as well as p38 Mitogen Activated Protein Kinase pathways as mediators of Sorafenib toxic effect but instead indicate that the inhibitory effect is exerted through the PI3K/Akt signalling pathway. Furthermore, we demonstrate that inhibition of Akt mediates cell death associated to Sorafenib without caspase activation, and this is consistent with the induction of autophagy, as indicated by the use of pharmacological and genetic approaches. CONCLUSION: The present report demonstrates that Sorafenib exerts its toxic effect through the induction of autophagy in an Akt-dependent fashion without the implication of Mitogen Activated Protein Kinase. Therefore, our data discard the use of inhibitors of the RAF-MEK-ERK1/2 signalling pathway in RCC and support the use of pro-autophagic compounds, opening new therapeutic opportunities for Renal Cell Carcinoma.
Assuntos
Autofagia/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sorafenibe/farmacologia , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
The E1a gene from adenovirus has become a major tool in cancer research. Since the discovery of E1a, it has been proposed to be an oncogene, becoming a key element in the model of cooperation between oncogenes. However, E1a's in vivo behaviour is consistent with a tumour suppressor gene, due to the block/delay observed in different xenograft models. To clarify this interesting controversy, we have evaluated the effect of the E1a 13s isoform from adenovirus 5 in vivo. Initially, a conventional xenograft approach was performed using previously unreported HCT116 and B16-F10 cells, showing a clear anti-tumour effect regardless of the mouse's immunological background (immunosuppressed/immunocompetent). Next, we engineered a transgenic mouse model in which inducible E1a 13s expression was under the control of cytokeratin 5 to avoid side effects during embryonic development. Our results show that E1a is able to block chemical skin carcinogenesis, showing an anti-tumour effect. The present report demonstrates the in vivo anti-tumour effect of E1a, showing that the in vitro oncogenic role of E1a cannot be extrapolated in vivo, supporting its future use in gene therapy approaches.
Assuntos
Proteínas E1A de Adenovirus/metabolismo , Neoplasias Cutâneas/prevenção & controle , Proteínas Supressoras de Tumor/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Proteínas E1A de Adenovirus/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Células HCT116 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol , Fatores de Tempo , Transfecção , Carga Tumoral , Proteínas Supressoras de Tumor/genéticaRESUMO
The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool.
RESUMO
The adenoviral gene E1a is known to enhance the antitumor effect of cisplatin, one of the cornerstones of the current cancer chemotherapy. Here we study the molecular basis of E1a mediated sensitivity to cisplatin in an experimental model of Non-small cell lung cancer. Our data show how E1a blocks the induction of autophagy triggered by cisplatin and promotes the apoptotic response in resistant cells. Interestingly, at the molecular level, we present evidences showing how the phosphatase MKP1 is a major determinant of cisplatin sensitivity and its upregulation is strictly required for the induction of chemosensitivity mediated by E1a. Indeed, E1a is almost unable to promote sensitivity in H460, in which the high expression of MKP1 remains unaffected by E1a. However, in resistant cell as H1299, H23 or H661, which display low levels of MKP1, E1a expression promotes a dramatic increase in the amount of MKP1 correlating with cisplatin sensitivity. Furthermore, effective knock down of MKP1 in H1299 E1a expressing cells restores resistance to a similar extent than parental cells. In summary, the present work reinforce the critical role of MKP1 in the cellular response to cisplatin highlighting the importance of this phosphatase in future gene therapy approach based on E1a gene.
Assuntos
Proteínas E1A de Adenovirus/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Fosfatase 1 de Especificidade Dupla/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas E1A de Adenovirus/genética , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Fosfatase 1 de Especificidade Dupla/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Resistance to cisplatin is a major challenge in the current cancer therapy. In order to explore new therapeutic strategies to cisplatin resistance, we evaluated, in a model of lung cancer (H1299 and H460 cell lines), the nature of the pathways leading to cell death. We observed that H1299 displayed a natural resistance to cisplatin due to an inability to trigger an apoptotic response that correlates with the induction of autophagy. However, pharmacological and genetic approaches showed how autophagy was a mechanism associated to cell death rather than to resistance. Indeed, pro-autophagic stimuli such as mTOR or Akt inhibition mediate cell death in both cell lines to a similar extent. We next evaluated the response to a novel platinum compound, monoplatin, able to promote cell death in an exclusive autophagy-dependent manner. In this case, no differences were observed between both cell lines. Furthermore, in response to monoplatin, two molecular hallmarks of cisplatin response (p53 and MAPKs) were not implicated, indicating the ability of this pro-autophagic compound to overcome cisplatin resistance. In summary, our data highlight how induction of autophagy could be used in cisplatin resistant tumours and an alternative treatment for p53 mutated patient in a synthetic lethally approach.