RESUMO
Many of the biological processes of the cell, from its structure to signal transduction, involve protein-protein interactions. On this basis, our aim was to identify cellular proteins that interact with ERK5, a serine/threonine protein kinase with a key role in tumor genesis and progression and a promising therapeutic target in many tumor types. Using affinity chromatography, immunoprecipitation, and mass spectrometry techniques, we unveiled an interaction between ERK5 and the mitochondrial glutaminase GLS in pancreatic tumor cells. Subsequent co-immunoprecipitation and immunofluorescence studies supported this interaction in breast and lung tumor cells as well. Genetic approaches using RNA interference techniques and CRISPR/Cas9 technology demonstrated that the loss of ERK5 function led to increased protein levels of GLS isoforms (KGA/GAC) and a concomitant increase in their activity in tumor cells. It is well known that the tumor cell reprograms its intermediary metabolism to meet its increased metabolic needs. In this sense, mitochondrial GLS is involved in the first step of glutamine catabolism, one of the main energy sources in the context of cancer. Our data suggest that ERK5 contributes to the regulation of tumor cell energy metabolism via glutaminolysis.
Assuntos
Glutaminase , Neoplasias Pulmonares , Humanos , Glutaminase/genética , Glutaminase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Interferência de RNA , Neoplasias Pulmonares/metabolismo , Glutamina/metabolismo , Linhagem Celular TumoralRESUMO
The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.
Assuntos
Quinase 8 Dependente de Ciclina/genética , Deficiências do Desenvolvimento/genética , Complexo Mediador/genética , Mutação de Sentido Incorreto , Encéfalo/anormalidades , Criança , Pré-Escolar , Ciclina C/genética , Quinases Ciclina-Dependentes/genética , Exoma , Feminino , Cardiopatias Congênitas/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Fenótipo , Fosforilação , SíndromeRESUMO
There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site. In contrast to type II inhibitors of CDK8 and CDK19, CCT251545 displays potent cell-based activity. We show that CCT251545 and close analogs alter WNT pathway-regulated gene expression and other on-target effects of modulating CDK8 and CDK19, including expression of genes regulated by STAT1. Consistent with this, we find that phosphorylation of STAT1(SER727) is a biomarker of CDK8 kinase activity in vitro and in vivo. Finally, we demonstrate in vivo activity of CCT251545 in WNT-dependent tumors.
Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Sondas Moleculares/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Compostos de Espiro/farmacologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Humanos , Modelos Moleculares , Sondas Moleculares/química , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Piridinas/química , Compostos de Espiro/químicaAssuntos
Adenocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Transgênicos , Transplante de NeoplasiasRESUMO
The mediator complex-associated cyclin dependent kinase CDK8 regulates ß-catenin-dependent transcription following activation of WNT signaling. Multiple lines of evidence suggest CDK8 may act as an oncogene in the development of colorectal cancer. Here we describe the successful optimization of an imidazo-thiadiazole series of CDK8 inhibitors that was identified in a high-throughput screening campaign and further progressed by structure-based design. In several optimization cycles, we improved the microsomal stability, potency, and kinase selectivity. The initial imidazo-thiadiazole scaffold was replaced by a 3-methyl-1H-pyrazolo[3,4-b]-pyridine which resulted in compound 25 (MSC2530818) that displayed excellent kinase selectivity, biochemical and cellular potency, microsomal stability, and is orally bioavailable. Furthermore, we demonstrated modulation of phospho-STAT1, a pharmacodynamic biomarker of CDK8 activity, and tumor growth inhibition in an APC mutant SW620 human colorectal carcinoma xenograft model after oral administration. Compound 25 demonstrated suitable potency and selectivity to progress into preclinical in vivo efficacy and safety studies.
Assuntos
Antineoplásicos/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tiadiazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Quinase 8 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/químicaRESUMO
The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer.
Assuntos
Aminopiridinas/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/farmacologia , Administração Oral , Aminopiridinas/administração & dosagem , Aminopiridinas/química , Animais , Disponibilidade Biológica , Células CACO-2 , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Solubilidade , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.
Assuntos
Anti-Inflamatórios/administração & dosagem , Antineoplásicos/administração & dosagem , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Complexo Mediador/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/toxicidade , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Xenoenxertos , Humanos , Hiperplasia/tratamento farmacológico , Camundongos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/toxicidade , Resultado do TratamentoRESUMO
WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine-piperidine bond of 9 by small-molecule X-ray crystallography. Medicinal chemistry optimization to maintain this twisted conformation, cognisant of physicochemical properties likely to maintain good cell permeability, led to 74 (CCT251545), a potent small-molecule inhibitor of WNT signaling with good oral pharmacokinetics. We demonstrate inhibition of WNT pathway activity in a solid human tumor xenograft model with evidence for tumor growth inhibition following oral dosing. This work provides a successful example of hypothesis-driven medicinal chemistry optimization from a singleton hit against a cell-based pathway assay without knowledge of the biochemical target.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Luciferases/antagonistas & inibidores , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Compostos de Espiro/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Bioensaio/métodos , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cristalografia por Raios X , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Luciferases/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Piridinas/administração & dosagem , Piridinas/química , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Compostos de Espiro/administração & dosagem , Compostos de Espiro/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Triple negative breast cancers (TNBCs) account for 15% of all breast cancers, and represent one of the most aggressive forms of the disease, exhibiting short relapse-free survival. In contrast to other breast cancer subtypes, the absence of knowledge about the etiopathogenic alterations that cause TNBCs force the use of chemotherapeutics to treat these tumors. Because of this, efforts have been devoted with the aim of incorporating novel therapies into the clinical setting. Kinases play important roles in the pathophysiology of several tumors, including TNBC. Since expression of the MAP kinase ERK5 has been linked to patient outcome in breast cancer, we analyzed the potential value of its targeting in TNBC. ERK5 was frequently overexpressed and active in samples from patients with TNBC, as well as in explants from mice carrying genetically-defined TNBC tumors. Moreover, expression of ERK5 was linked to a worse prognosis in TNBC patients. Knockdown experiments demonstrated that ERK5 supported proliferation of TNBC cells. Pharmacological inhibition of ERK5 with TG02, a clinical stage inhibitor which targets ERK5 and other kinases, inhibited cell proliferation by blocking passage of cells through G1 and G2, and also triggered apoptosis in certain TNBC cell lines. TG02 had significant antitumor activity in a TNBC xenograft model in vivo, and also augmented the activity of chemotherapeutic agents commonly used to treat TNBC. Together, these data indicate that ERK5 targeting may represent a valid strategy against TNBC, and support the development of trials aimed at evaluating the clinical effectiveness of drugs that block this kinase.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Docetaxel , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Humanos , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Terapia de Alvo Molecular , Distribuição Aleatória , Taxoides/administração & dosagem , Taxoides/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Vimblastina/administração & dosagem , Vimblastina/análogos & derivados , Vimblastina/farmacologia , Vinorelbina , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: To analyze the antimyeloma potential of TG02, an ERK5/CDK inhibitory drug. EXPERIMENTAL DESIGN: Utilizing different multiple myeloma cell lines we determined the effect of TG02 over viability by MTT assays. The apoptotic effect over multiple myeloma patient samples was studied ex vivo by cytometry. The mechanism of action of TG02 was analyzed in the cell line MM1S, studying its effect on the cell cycle, the induction of apoptosis, and the loss of mitochondrial membrane potential by cytometry and Western blot. Two models of multiple myeloma xenograft were utilized to study the in vivo action of TG02. RESULTS: TG02 potently inhibited proliferation and survival of multiple myeloma cell lines, even under protective bone marrow niche conditions, and selectively induced apoptosis of primary patient-derived malignant plasma cells. TG02 displayed significant single-agent activity in two multiple myeloma xenograft models, and enhanced the in vivo activity of bortezomib and lenalidomide. Signaling analyses revealed that the drug simultaneously blocked the activity of CDKs 1, 2, and 9 as well as the MAP kinase ERK5 in MM1S cells, leading to cell-cycle arrest and rapid commitment to apoptosis. TG02 induced robust activation of both the intrinsic and extrinsic pathways of apoptosis, and depletion of XIAP and the key multiple myeloma survival protein Mcl-1. CONCLUSIONS: TG02 is a promising new antimyeloma agent that is currently in phase I clinical trials in leukemia and multiple myeloma patients.
Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Mieloma Múltiplo/prevenção & controle , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Western Blotting , Ácidos Borônicos/farmacologia , Bortezomib , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lenalidomida , Camundongos SCID , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Talidomida/análogos & derivados , Talidomida/farmacologia , Quinase Ativadora de Quinase Dependente de CiclinaRESUMO
BACKGROUND: Breast cancer is the most common neoplasia in women. Even though advances in its treatment have improved disease outcome, some patients relapse. Therefore, attempts to better define the molecular determinants that drive breast cancer cell proliferation may help in defining potential therapeutic targets. Mitogen-activated protein kinases (MAPK) play important roles in tumorigenesis. One of them, Erk5, has been linked to the proliferation of breast cancer cells in vitro. Here we have investigated the expression and prognostic value of Erk5 in human breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: Animal and cellular models were used to study Erk5 expression and function in breast cancer. In 84 human breast tumours the expression of Erk5 was analyzed by immunohistochemistry. Active Erk5 (pErk5) was studied by Western blotting. Correlation of Erk5 with clinicopathological parameters and with disease-free survival in early stage breast cancer patients was analyzed. Expression of Erk5 was detected in most patients, and overexpression was found in 20%. Active Erk5 was present in a substantial number of samples, as well as in tumours from an animal breast cancer model. Overexpression of Erk5 was associated with a decrease in disease-free survival time, which was independent of other clinicopathological parameters of prognosis. Transient transfection of a short hairpin RNA (shRNA) targeting Erk5, and a stable cell line expressing a dominant negative form of Erk5 (Erk5(AEF)), were used to investigate the influence of Erk5 on drugs used in the clinic to treat breast tumours. We found that inhibition of Erk5 decreased cancer cell proliferation and also sensitized these cells to the action of anti-HER2 therapies. CONCLUSIONS/SIGNIFICANCE: Overexpression of Erk5 is an independent predictor of disease-free survival in breast cancer, and may represent a future therapeutic target.