Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 150(5): 374-389, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38991046

RESUMO

BACKGROUND: The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS: Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS: Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS: Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.


Assuntos
Insuficiência Cardíaca , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Camundongos Knockout , Animais , Insuficiência Cardíaca/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Camundongos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças
2.
Cancer Sci ; 115(5): 1634-1645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411285

RESUMO

The urinary catecholamine metabolites, homovanillic acid (HVA) and vanillylmandelic acid (VMA), are used for the adjunctive diagnosis of neuroblastomas. We aimed to develop a scoring system for the diagnosis and pretreatment risk assessment of neuroblastoma, incorporating age and other urinary catecholamine metabolite combinations. Urine samples from 227 controls (227 samples) and 68 patients with neuroblastoma (228 samples) were evaluated. First, the catecholamine metabolites vanillactic acid (VLA) and 3-methoxytyramine sulfate (MTS) were identified as urinary marker candidates through comprehensive analysis using liquid chromatography-mass spectrometry. The concentrations of these marker candidates and conventional markers were then compared among controls, patients, and numerous risk groups to develop a scoring system. Participants were classified into four groups: control, low risk, intermediate risk, and high risk, and the proportional odds model was fitted using the L2-penalized maximum likelihood method, incorporating age on a monthly scale for adjustment. This scoring model using the novel urine catecholamine metabolite combinations, VLA and MTS, had greater area under the curve values than the model using HVA and VMA for diagnosis (0.978 vs. 0.964), pretreatment risk assessment (low and intermediate risk vs. high risk: 0.866 vs. 0.724; low risk vs. intermediate and high risk: 0.871 vs. 0.680), and prognostic factors (MYCN status: 0.741 vs. 0.369, histology: 0.932 vs. 0.747). The new system also had greater accuracy in detecting missing high-risk neuroblastomas, and in predicting the pretreatment risk at the time of screening. The new scoring system employing VLA and MTS has the potential to replace the conventional adjunctive diagnostic method using HVA and VMA.


Assuntos
Biomarcadores Tumorais , Ácido Homovanílico , Neuroblastoma , Ácido Vanilmandélico , Humanos , Neuroblastoma/urina , Neuroblastoma/diagnóstico , Masculino , Feminino , Medição de Risco , Pré-Escolar , Biomarcadores Tumorais/urina , Lactente , Ácido Homovanílico/urina , Ácido Vanilmandélico/urina , Criança , Catecolaminas/urina , Estudos de Casos e Controles , Dopamina/urina , Dopamina/análogos & derivados , Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA