Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(24): 9485-9490, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32053279

RESUMO

Reported herein is a visible-light-mediated radical approach to the α-alkylation of ketones. This method exploits the ability of a nucleophilic organocatalyst to generate radicals upon SN 2-based activation of alkyl halides and blue light irradiation. The resulting open-shell intermediates are then intercepted by weakly nucleophilic silyl enol ethers, which would be unable to directly attack the alkyl halides through a traditional two-electron path. The mild reaction conditions allowed functionalization of the α position of ketones with functional groups that are not compatible with classical anionic strategies. In addition, the redox-neutral nature of this process makes it compatible with a cinchona-based primary amine catalyst, which was used to develop a rare example of enantioselective organocatalytic radical α-alkylation of ketones.

2.
J Org Chem ; 82(6): 2889-2897, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28225271

RESUMO

Two different approaches for asymmetric catalytic Wittig [2,3]-rearrangement were developed. Allyloxymalonate derivatives were converted into homoallyl alcohols via organocatalytic or Ca2+-catalyzed pathways in moderate to high enantioselectivities.

3.
ChemSusChem ; 17(8): e202301588, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279777

RESUMO

We present a novel, greener chloromethylation procedure for organosolv aspen lignin under mild reaction conditions without Lewis acid as a catalyst and in acetic acid as a solvent. This synthetic protocol provides a reliable approach to chloromethylated lignin (CML) and means to obtain valuable lignin derivatives. The resulted CML was subsequently transformed into 1-methylimidazolium lignin (ImL), which effectively serves as a stabilizing agent for Pd/CuO nanoparticles (Pd/CuO-NPs). To evaluate the versatility of developed lignin-based catalyst, we investigate its performance in a series of carbon-carbon bond formation reactions, including Suzuki-Miyaura, Sonogashira, Heck reactions, and azide-alkyne cycloaddition (click) reaction. Remarkably, this catalyst exhibited a high degree of catalytic efficiency, resulting in reactions with yields ranging from average to excellent. The heterogeneous catalyst demonstrated outstanding recyclability, enabling its reuse for at least 10 consecutive reaction cycles, with yields consistently falling within the range of 42 % to 84 %. A continuous flow reactor cartridge prototype employing Lignin@Pd/CuO-NPs was developed, yielding results comparable to those achieved in batch reactions. The utilization of Lignin@Pd/CuO-NPs as a catalyst showcases its potential to facilitate diverse carbon-carbon bond formation reactions and underscores its promising recyclability, aligning with the green chemistry metrics and principles of sustainability in chemical processes.

4.
ChemSusChem ; 17(8): e202400587, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38546420

RESUMO

Invited for this issue's cover are researchers from Tallinn University of Technology (TalTech). The image depicts the lignin chemical evolution route from raw biomass through a greener chloromethylation procedure developed by the research team. It showcases the transformation into lignin-supported metal nanoparticles, serving as a catalyst for various chemical reactions in both batch and continuous flow conditions. The Research Article itself is available at 10.1002/cssc.202301588.

5.
ACS Omega ; 6(16): 10884-10896, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056242

RESUMO

The Chikungunya virus (CHIKV) is an arbovirus belonging to the genus Alphavirus of the Togaviridae family. CHIKV is transmitted by the mosquitoes and causes Chikungunya fever. CHIKV outbreaks have occurred in Africa, Asia, Europe, and the countries of Indian and Pacific Oceans. In 2013, CHIKV cases were registered for the first time in the Americas on the Caribbean islands. There is currently no vaccine to prevent or medicines to treat CHIKV infection. The CHIKV nonstructural protease (nsP2) is a promising potential target for the development of drugs against CHIKV infection because this protein is one of the key components of the viral replication complex and is involved in multiple steps of virus infection. In this work, novel analogues of the potential CHIKV nsP2 protease inhibitor, first reported by Das et al. in 2016, were identified using molecular modeling methods, synthesized, and evaluated in vitro. The optimization of the structure of the inhibitor allowed to increase the antiviral activity of the compound 2-10 times. The possible mechanism of action of the identified potential inhibitors of the CHIKV nsP2 protease was studied in detail using molecular dynamics (MD) simulations. According to the MD results, the most probable mechanism of action is the blocking of conformational changes in the nsP2 protease required for substrate recognition and binding.

6.
Org Lett ; 21(13): 4976-4980, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31247768

RESUMO

The enantioselective [2,3]-Wittig rearrangement of cinnamyloxycyclopentanone derivatives was performed in the presence of a Cinchona-based primary amine. The described method provides synthetically valuable α-hydroxy ketones with quaternary stereogenic centers in excellent enantiomeric purities. Relying on the X-ray crystal structure of the product and the DFT calculations, we propose that the rearrangement is promoted by an intramolecular hydrogen bond between the substrate and the catalyst.

7.
Org Lett ; 18(6): 1358-61, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26937554

RESUMO

A highly enantioselective organocatalytic [2,3]-rearrangement of oxindole derivatives is presented. The reaction was catalyzed by squaramide, and this provides access to 3-hydroxy 3-substituted oxindoles in high enantiomeric purities.


Assuntos
Indóis/síntese química , Amidas/química , Catálise , Técnicas de Química Combinatória , Indóis/química , Estrutura Molecular , Oxindóis , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA