RESUMO
BACKGROUND AND OBJECTIVES: The European Medicine Agency extended the use of Comirnaty, Spikevax, and Nuvaxovid in paediatrics; thus, these vaccines require additional real-world safety evidence. Herein, we aimed to monitor the safety of COVID-19 vaccines through Covid-19 Vaccine Monitor (CVM) and EudraVigilance surveillance systems and the published pivotal clinical trials. METHODS: In a prospective cohort of vaccinees aged between 5 and 17 years, we measured the frequency of commonly reported (local/systemic solicited) and serious adverse drug events (ADRs) following the first and second doses of COVID-19 vaccines in Europe using data from the CVM cohort until April 2022. The results of previous pivotal clinical trials and data in the EudraVigilance were also analysed. RESULTS: The CVM study enrolled 658 first-dose vaccinees (children aged 5-11 years; n = 250 and adolescents aged 12-17 years; n = 408). Local/systemic solicited ADRs were common, whereas serious ADRs were uncommon. Among Comirnaty first and second dose recipients, 28.8% and 17.1% of children and 54.2% and 52.2% of adolescents experienced at least one ADR, respectively; injection-site pain (29.2% and 20.7%), fatigue (16.1% and 12.8%), and headache (22.1% and 19.3%) were the most frequent local and systemic ADRs. Results were consistent but slightly lower than in pivotal clinical trials. Reporting rates in Eudravigilance were lower by a factor of 1000. CONCLUSIONS: The CVM study showed high frequencies of local solicited reactions after vaccination but lower rates than in pivotal clinical trials. Injection-site pain, fatigue, and headache were the most commonly reported ADRs for clinical trials, but higher than spontaneously reported data.
Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Adolescente , Criança , Humanos , Pré-Escolar , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Dor , Cefaleia/induzido quimicamente , Cefaleia/epidemiologia , FadigaRESUMO
BACKGROUND: Post-marketing vaccine safety surveillance aims to monitor and quantify adverse events following immunization in a population, but little is known about their implementation in low- and middle-income countries (LMICs). We aimed to synthesize methodological approaches used to assess adverse events following COVID-19 vaccination in LMICs. METHODS: For this systematic review, we searched articles published from 1 December 2019 to 18 February 2022 in main databases, including MEDLINE and Embase. We included all peer-reviewed observational COVID-19 vaccine safety monitoring studies. We excluded randomized controlled trials and case reports. We extracted data using a standardized extraction form. Two authors assessed study quality using the modified Newcastle-Ottawa Quality Assessment Scale. All findings were summarized narratively using frequency tables and figures. RESULTS: Our search found 4254 studies, of which 58 were eligible for analysis. Many of the studies included in this review were conducted in middle-income countries, with 26 studies (45%) in lower-middle-income and 28 (48%) in upper-middle-income countries. More specifically, 14 studies were conducted in the Middle East region, 16 in South Asia, 8 in Latin America, 8 in Europe and Central Asia, and 4 in Africa. Only 3% scored 7-8 points (good quality) on the Newcastle-Ottawa Scale methodological quality assessment, while 10% got 5-6 points (medium). About 15 studies (25.9%) used a cohort study design and the rest were cross-sectional. In half of them (50%), vaccination data were gathered from the participants' self-reporting methods. Seventeen studies (29.3%) used multivariable binary logistic regression and three (5.2%) used survival analyses. Only 12 studies (20.7%) performed model diagnostics and validity checks (e.g., the goodness of fit, identification of outliers, and co-linearity). CONCLUSIONS: Published studies on COVID-19 vaccine safety surveillance in LMICs are limited in number and the methods used do not often address potential confounders. Active surveillance of vaccines in LMICs are needed to advocate vaccination programs. Implementing training programs in pharmacoepidemiology in LMICs is essential.