Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(6): 1410-1422.e27, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32413320

RESUMO

Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Coupling of cell ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC activity without cell sorting.


Assuntos
Sistemas CRISPR-Cas/genética , Linhagem da Célula/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Transcriptoma/genética , Animais , Linhagem Celular , Feminino , Citometria de Fluxo/métodos , Células-Tronco Hematopoéticas/fisiologia , Masculino , Camundongos , Transdução Genética/métodos
3.
Nature ; 606(7915): 747-753, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705805

RESUMO

Haematopoietic stem cells (HSCs) arise in the embryo from the arterial endothelium through a process known as the endothelial-to-haematopoietic transition (EHT)1-4. This process generates hundreds of blood progenitors, of which a fraction go on to become definitive HSCs. It is generally thought that most adult blood is derived from those HSCs, but to what extent other progenitors contribute to adult haematopoiesis is not known. Here we use in situ barcoding and classical fate mapping to assess the developmental and clonal origins of adult blood in mice. Our analysis uncovers an early wave of progenitor specification-independent of traditional HSCs-that begins soon after EHT. These embryonic multipotent progenitors (eMPPs) predominantly drive haematopoiesis in the young adult, have a decreasing yet lifelong contribution over time and are the predominant source of lymphoid output. Putative eMPPs are specified within intra-arterial haematopoietic clusters and represent one fate of the earliest haematopoietic progenitors. Altogether, our results reveal functional heterogeneity during the definitive wave that leads to distinct sources of adult blood.


Assuntos
Envelhecimento , Linhagem da Célula , Embrião de Mamíferos , Hematopoese , Células-Tronco Hematopoéticas , Animais , Embrião de Mamíferos/citologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Células-Tronco Multipotentes/citologia
4.
Genes Dev ; 26(20): 2311-24, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23019125

RESUMO

Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24(-/-) and Lmna(G609G/G609G) mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging.


Assuntos
Envelhecimento/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , NF-kappa B/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Células Cultivadas , Senescência Celular , Humanos , Inflamação/enzimologia , Inflamação/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lamina Tipo A , Longevidade/efeitos dos fármacos , Longevidade/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , NF-kappa B/genética , Lâmina Nuclear/enzimologia , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Transdução de Sinais , Salicilato de Sódio/farmacologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/efeitos dos fármacos
5.
EMBO J ; 34(14): 1875-88, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25991604

RESUMO

MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14(-/-) mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16(INK4a) and p21(CIP1/WAF) (1), increased activity of senescence-associated ß-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14(-/-) mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions.


Assuntos
Senescência Celular/genética , Metaloproteinase 14 da Matriz/metabolismo , Tretinoína/farmacologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Glicemia/análise , Senescência Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Hipoglicemia/genética , Hipoglicemia/metabolismo , Longevidade/efeitos dos fármacos , Metaloproteinase 14 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Membrana Nuclear/genética , Membrana Nuclear/ultraestrutura , Tretinoína/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(46): E7250-E7259, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799555

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24-/- mouse model of HGPS. Challenge of Zmpste24-/- mice with the ß-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24-/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24-/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.


Assuntos
Arritmias Cardíacas/fisiopatologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Progéria/fisiopatologia , Adolescente , Adulto , Animais , Arritmias Cardíacas/metabolismo , Cálcio/fisiologia , Doença do Sistema de Condução Cardíaco/metabolismo , Criança , Pré-Escolar , Conexina 43/metabolismo , Conexina 43/fisiologia , Feminino , Coração/fisiologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Lâmina Nuclear/fisiologia , Progéria/metabolismo , Retículo Sarcoplasmático/fisiologia , Adulto Jovem
7.
J Immunol ; 197(1): 296-302, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27259858

RESUMO

Matrix metalloproteases (MMPs) regulate innate immunity acting over proinflammatory cytokines, chemokines, and other immune-related proteins. MMP-25 (membrane-type 6-MMP) is a membrane-bound enzyme predominantly expressed in leukocytes whose biological function has remained largely unknown. We have generated Mmp25-deficient mice to elucidate the in vivo function of this protease. These mutant mice are viable and fertile and do not show any spontaneous phenotype. However, Mmp25-null mice exhibit a defective innate immune response characterized by low sensitivity to bacterial LPS, hypergammaglobulinemia, and reduced secretion of proinflammatory molecules. Moreover, these immune defects can be tracked to a defective NF-κB activation observed in Mmp25-deficient leukocytes. Globally, our findings provide new mechanistic insights into innate immunity through the activity of MMP-25, suggesting that this proteinase could be a potential therapeutic target for immune-related diseases.


Assuntos
Hipergamaglobulinemia/imunologia , Leucócitos/imunologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Imunidade Inata/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Metaloproteinases da Matriz Associadas à Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais
8.
J Cell Physiol ; 230(1): 191-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24931902

RESUMO

Metabolic reprogramming strategies focus on the normalization of metabolism of cancer cells and constitute promising targets for cancer treatment. Here, we demonstrate that the glucose transporter 4 (GLUT4) has a prominent role in basal glucose uptake in MCF7 and MDA-MB-231 breast cancer cells. We show that shRNA-mediated down-regulation of GLUT4 diminishes glucose uptake and induces metabolic reprogramming by reallocating metabolic flux to oxidative phosphorylation. This reallocation is reflected on an increased activity of the mitochondrial oxidation of pyruvate and lower lactate release. Altogether, GLUT4 inhibition compromises cell proliferation and critically affects cell viability under hypoxic conditions, providing proof-of-principle for the feasibility of using pharmacological approaches to inhibit GLUT4 in order to induce metabolic reprogramming in vivo in breast cancer models.


Assuntos
Neoplasias da Mama/metabolismo , Metabolismo Energético/genética , Transportador de Glucose Tipo 4/genética , Glucose/metabolismo , Apoptose/genética , Transporte Biológico/genética , Neoplasias da Mama/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Regulação para Baixo , Feminino , Glicólise/genética , Humanos , Ácido Láctico/metabolismo , Células MCF-7 , Mitocôndrias/metabolismo , Oxirredução , Fosforilação Oxidativa , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Circulation ; 127(24): 2442-51, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23690466

RESUMO

BACKGROUND: Progerin is a mutant form of lamin A responsible for Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder characterized by excessive atherosclerosis and vascular calcification that leads to premature death, predominantly of myocardial infarction or stroke. The goal of this study was to investigate mechanisms that cause excessive vascular calcification in HGPS. METHODS AND RESULTS: We performed expression and functional studies in wild-type mice and knock-in Lmna(G609G/+) mice expressing progerin, which mimic the main clinical manifestations of HGPS. Lmna(G609G/+) mice showed excessive aortic calcification, and primary aortic vascular smooth muscle cells from these progeroid animals had an impaired capacity to inhibit vascular calcification. This defect in progerin-expressing vascular smooth muscle cells is associated with increased expression and activity of tissue-nonspecific alkaline phosphatase and mitochondrial dysfunction, which leads to reduced ATP synthesis. Accordingly, Lmna(G609G/+) vascular smooth muscle cells are defective for the production and extracellular accumulation of pyrophosphate, a major inhibitor of vascular calcification. We also found increased alkaline phosphatase activity and reduced ATP and pyrophosphate levels in plasma of Lmna(G609G/+) mice without changes in phosphorus and calcium. Treatment with pyrophosphate inhibited vascular calcification in progeroid mice. CONCLUSIONS: Excessive vascular calcification in Lmna(G609G) mice is caused by reduced extracellular accumulation of pyrophosphate that results from increased tissue-nonspecific alkaline phosphatase activity and diminished ATP availability caused by mitochondrial dysfunction in vascular smooth muscle cells. Excessive calcification is ameliorated on pyrophosphate treatment. These findings reveal a previously undefined pathogenic process in HGPS that may also contribute to vascular calcification in normal aging, because progerin progressively accumulates in the vascular tissue of individuals without HGPS.


Assuntos
Difosfatos/metabolismo , Difosfatos/uso terapêutico , Progéria/tratamento farmacológico , Progéria/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Células Cultivadas , Difosfatos/farmacologia , Modelos Animais de Doenças , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias Musculares/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Resultado do Tratamento
10.
Am J Hum Genet ; 88(5): 650-6, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21549337

RESUMO

Accelerated aging syndromes represent a valuable source of information about the molecular mechanisms involved in normal aging. Here, we describe a progeroid syndrome that partially phenocopies Hutchinson-Gilford progeria syndrome (HGPS) but also exhibits distinctive features, including the absence of cardiovascular deficiencies characteristic of HGPS, the lack of mutations in LMNA and ZMPSTE24, and a relatively long lifespan of affected individuals. Exome sequencing and molecular analysis in two unrelated families allowed us to identify a homozygous mutation in BANF1 (c.34G>A [p.Ala12Thr]), encoding barrier-to-autointegration factor 1 (BAF), as the molecular abnormality responsible for this Mendelian disorder. Functional analysis showed that fibroblasts from both patients have a dramatic reduction in BAF protein levels, indicating that the p.Ala12Thr mutation impairs protein stability. Furthermore, progeroid fibroblasts display profound abnormalities in the nuclear lamina, including blebs and abnormal distribution of emerin, an interaction partner of BAF. These nuclear abnormalities are rescued by ectopic expression of wild-type BANF1, providing evidence for the causal role of this mutation. These data demonstrate the utility of exome sequencing for identifying the cause of rare Mendelian disorders and underscore the importance of nuclear envelope alterations in human aging.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Adulto , Núcleo Celular , Células Cultivadas , Pré-Escolar , Análise Mutacional de DNA , Feminino , Fibroblastos/metabolismo , Ligação Genética , Homozigoto , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Linhagem , Fenótipo , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Conformação Proteica , Alinhamento de Sequência
11.
Hum Mol Genet ; 20(23): 4540-55, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21875900

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder phenotypically characterized by many features of premature aging. Most cases of HGPS are due to a heterozygous silent mutation (c.1824C>T; p.Gly608Gly) that enhances the use of an internal 5' splice site (5'SS) in exon 11 of the LMNA pre-mRNA and leads to the production of a truncated protein (progerin) with a dominant negative effect. Here we show that HGPS mutation changes the accessibility of the 5'SS of LMNA exon 11 which is sequestered in a conserved RNA structure. Our results also reveal a regulatory role of a subset of serine-arginine (SR)-rich proteins, including serine-arginine rich splicing factor 1 (SRSF1) and SRSF6, on utilization of the 5'SS leading to lamin A or progerin production and a modulation of this regulation in the presence of the c.1824C>T mutation is shown directly on HGPS patient cells. Mutant mice carrying the equivalent mutation in the LMNA gene (c.1827C>T) also accumulate progerin and phenocopy the main cellular alterations and clinical defects of HGPS patients. RNAi-induced depletion of SRSF1 in the HGPS-like mouse embryonic fibroblasts (MEFs) allowed progerin reduction and dysmorphic nuclei phenotype correction, whereas SRSF6 depletion aggravated the HGPS-like MEF's phenotype. We demonstrate that changes in the splicing ratio between lamin A and progerin are key factors for lifespan since heterozygous mice harboring the mutation lived longer than homozygous littermates but less than the wild-type. Genetic and biochemical data together favor the view that physiological progerin production is under tight control of a conserved splicing mechanism to avoid precocious aging.


Assuntos
Senilidade Prematura/genética , Evolução Molecular , Lamina Tipo A/genética , Splicing de RNA/genética , Animais , Sequência de Bases , Células Cultivadas , Sequência Conservada/genética , Éxons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Progéria/genética , Progéria/patologia , Isoformas de Proteínas/genética , Precursores de Proteínas/genética , RNA/química , RNA/genética , Sítios de Splice de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Processamento de Serina-Arginina , Transfecção
12.
Cell Commun Signal ; 11(1): 19, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23517552

RESUMO

BACKGROUND: Monitoring activity of specific signaling pathways in vivo is challenging and requires highly sensitive methods to detect dynamic perturbations in whole organisms. RESULTS: In vivo gene delivery of a luciferase reporter followed by bioluminiscence imaging allows measuring NF-κB activity in mice liver and lungs. CONCLUSIONS: This protocol allows a direct measure of NF-κB activity through quantification of bioluminescence signal, demonstrating its accuracy and sensitivity in different animal models and experimental conditions. Variants could be also applied for the analysis of NF-κB activity in different tissues or for studying other signaling pathways in vivo.

13.
Proc Natl Acad Sci U S A ; 107(37): 16268-73, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805469

RESUMO

Zmpste24 (also called FACE-1) is a metalloproteinase involved in the maturation of lamin A, an essential component of the nuclear envelope. Zmpste24-deficient mice exhibit multiple defects that phenocopy human accelerated aging processes such as Hutchinson-Gilford progeria syndrome. In this work, we report that progeroid Zmpste24(-/-) mice present profound transcriptional alterations in genes that regulate the somatotroph axis, together with extremely high circulating levels of growth hormone (GH) and a drastic reduction in plasma insulin-like growth factor 1 (IGF-1). We also show that recombinant IGF-1 treatment restores the proper balance between IGF-1 and GH in Zmpste24(-/-) mice, delays the onset of many progeroid features, and significantly extends the lifespan of these progeroid animals. Our findings highlight the importance of IGF/GH balance in longevity and may be of therapeutic interest for devastating human progeroid syndromes associated with nuclear envelope abnormalities.


Assuntos
Senilidade Prematura/tratamento farmacológico , Fator de Crescimento Insulin-Like I/uso terapêutico , Longevidade/efeitos dos fármacos , Somatotrofos/efeitos dos fármacos , Senilidade Prematura/sangue , Animais , Sequência de Bases , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Metaloendopeptidases/deficiência , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética
14.
Biochem Soc Trans ; 39(6): 1710-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103512

RESUMO

Progeroid laminopathies are accelerated aging syndromes caused by defects in nuclear envelope proteins. Accordingly, mutations in the LMNA gene and functionally related genes have been described to cause HGPS (Hutchinson-Gilford progeria syndrome), MAD (mandibuloacral dysplasia) or RD (restrictive dermopathy). Functional studies with animal and cellular models of these syndromes have facilitated the identification of the molecular alterations and regulatory pathways involved in progeria development. We have recently described a novel regulatory pathway involving miR-29 and p53 tumour suppressor which has provided valuable information on the molecular components orchestrating the response to nuclear damage stress. Furthermore, by using progeroid mice deficient in ZMPSTE24 (zinc metalloprotease STE24 homologue) involved in lamin A maturation, we have demonstrated that, besides these abnormal cellular responses to stress, dysregulation of the somatotropic axis is responsible for some of the alterations associated with progeria. Consistent with these observations, pharmacological restoration of the somatotroph axis in these mice delays the onset of their progeroid features, significantly extending their lifespan and supporting the importance of systemic alterations in progeria progression. Finally, we have very recently identified a novel progeroid syndrome with distinctive features from HGPS and MAD, which we have designated NGPS (Néstor-Guillermo progeria syndrome) (OMIM #614008). This disorder is caused by a mutation in BANF1, a gene encoding a protein with essential functions in the assembly of the nuclear envelope, further illustrating the importance of the nuclear lamina integrity for human health and providing additional support to the study of progeroid syndromes as a valuable source of information on human aging.


Assuntos
Progéria/metabolismo , Progéria/patologia , Animais , Dano ao DNA , Humanos , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Progéria/genética , Somatotrofos/metabolismo , Somatotrofos/patologia , Proteína Supressora de Tumor p53/metabolismo
15.
BMC Cancer ; 11: 172, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575252

RESUMO

BACKGROUND: A subset of lung cancer patients harbour EGFR somatic mutations in their tumours and are candidates for treatment with EGFR tyrosine kinase inhibitors. In a few cases EGFR mutations have also been found in the germ line, suggesting a role in lung carcinogenesis. Objetives of this study were: 1) To analyze the EGFR gene mutations in a population diagnosed with lung adenocarcinoma from Northern Spain. 2) To determine the frequency of a new germ-line mutation found in our laboratory as well as the frequency in our population of three other EGFR germ-line mutations detected by other authors. 3) To determine whether the novel mutation detected may have a functional effect on the EGFR protein. METHODS: Tumour DNA samples were obtained from frozen or paraffin embedded tumour tissues. Samples of DNA from peripheral blood cells were obtained from 912 individuals with lung cancer recruited from the CAPUA study 12, 477 unrelated healthy donor individuals and 32 individuals with other types of cancer. EGFR gene exons 18 to 21 were studied by direct standard dideoxy sequencing. Specific mutations were determined either by direct sequencing or by specific RFLP analysis. Cell lines were transfected with EGFR-mutant plasmids and analysed by western blot with antibodies specific for total or phosphorylated-EGFR. RESULTS: We found EGFR mutation in 12 of the 71 tumour samples (17%). One tumour contained two mutations. One mutation (p.R776G) was present as a germ line. Using an RFLP analysis, this mutation was not found in 954 alleles from healthy individuals studied, concluding that it is not a polymorphism. The mutation was not found either in genomic DNA from 912 lung cancer patients. Three additional EGFR germ-line mutations that were already described were not found in any of the studied samples. These observations show that EGFR mutated alleles are rare in the population. In vitro studies revealed that tyrosine autophosphorylation is enhanced in p.R776G-mutant EGFR when compared with wild-type EGFR. This enhanced autophosphorylation in the absence of ligand may be associated with a proliferative advantage. CONCLUSIONS: Germ-line mutations in EGFR are rare but may contribute to oncogenesis.


Assuntos
Adenocarcinoma/genética , Transformação Celular Neoplásica/genética , Receptores ErbB/genética , Mutação em Linhagem Germinativa/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Adulto , Idoso , Alelos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Receptores ErbB/metabolismo , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Espanha , Adulto Jovem
16.
Cell Stem Cell ; 27(4): 590-604.e9, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730753

RESUMO

Although the Hippo transcriptional coactivator YAP is considered oncogenic in many tissues, its roles in intestinal homeostasis and colorectal cancer (CRC) remain controversial. Here, we demonstrate that the Hippo kinases LATS1/2 and MST1/2, which inhibit YAP activity, are required for maintaining Wnt signaling and canonical stem cell function. Hippo inhibition induces a distinct epithelial cell state marked by low Wnt signaling, a wound-healing response, and transcription factor Klf6 expression. Notably, loss of LATS1/2 or overexpression of YAP is sufficient to reprogram Lgr5+ cancer stem cells to this state and thereby suppress tumor growth in organoids, patient-derived xenografts, and mouse models of primary and metastatic CRC. Finally, we demonstrate that genetic deletion of YAP and its paralog TAZ promotes the growth of these tumors. Collectively, our results establish the role of YAP as a tumor suppressor in the adult colon and implicate Hippo kinases as therapeutic vulnerabilities in colorectal malignancies.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células , Camundongos , Fosfoproteínas/metabolismo , Fatores de Transcrição
17.
Nat Med ; 25(3): 423-426, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778239

RESUMO

CRISPR/Cas9-based therapies hold considerable promise for the treatment of genetic diseases. Among these, Hutchinson-Gilford progeria syndrome, caused by a point mutation in the LMNA gene, stands out as a potential candidate. Here, we explore the efficacy of a CRISPR/Cas9-based approach that reverts several alterations in Hutchinson-Gilford progeria syndrome cells and mice by introducing frameshift mutations in the LMNA gene.


Assuntos
Sistemas CRISPR-Cas , Terapia Genética/métodos , Lamina Tipo A/genética , Progéria/terapia , Animais , Células HEK293 , Humanos , Lamina Tipo A/metabolismo , Camundongos , Mutação Puntual , Progéria/genética
18.
Nat Cell Biol ; 21(3): 410, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30559458

RESUMO

We, the authors, are retracting this Article due to issues that have come to our attention regarding data availability, data description and figure assembly. Specifically, original numerical data are not available for the majority of the graphs presented in the paper. Although original data were available for most EMSA and immunoblot experiments, those corresponding to the published EMSA data of Supplementary Fig. 8a, the independent replicate immunoblots of Fig. 8b and Supplementary Fig. 1e, and the independent replicate EMSA data of Supplementary Figs 6e, 8b, 8c and 8d, are unavailable. Mistakes were detected in the presentation of Figs 3c, 4i and Supplementary Figs 6a, 8a, 8d, 9, and in some cases the ß-actin immunoblots were erroneously described in the figure legends as loading controls, rather than as sample processing controls that were run on separate gels. Although we, the authors, believe that the key findings of the paper are still valid, given the issues with data availability we have concluded that the most appropriate course of action is to retract the Article. We deeply regret these errors and apologize to the scientific community for any confusion this publication may have caused. All authors agree with the retraction.

19.
Cell Rep ; 25(9): 2308-2316.e4, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485801

RESUMO

Mutation accumulation during life can contribute to hematopoietic dysfunction; however, the underlying dynamics are unknown. Somatic mutations in blood progenitors can provide insight into the rate and processes underlying this accumulation, as well as the developmental lineage tree and stem cell division numbers. Here, we catalog mutations in the genomes of human-bone-marrow-derived and umbilical-cord-blood-derived hematopoietic stem and progenitor cells (HSPCs). We find that mutations accumulate gradually during life with approximately 14 base substitutions per year. The majority of mutations were acquired after birth and could be explained by the constant activity of various endogenous mutagenic processes, which also explains the mutation load in acute myeloid leukemia (AML). Using these mutations, we construct a developmental lineage tree of human hematopoiesis, revealing a polyclonal architecture and providing evidence that developmental clones exhibit multipotency. Our approach highlights features of human native hematopoiesis and its implications for leukemogenesis.


Assuntos
Linhagem da Célula/genética , Senescência Celular/genética , Hematopoese/genética , Mutagênese/genética , Mutação/genética , Adulto , Embrião de Mamíferos/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Especificidade de Órgãos
20.
Aging Cell ; 17(3): e12742, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29484800

RESUMO

Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age-dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina-associated domains (LADs) using lamin B1 ChIP-Seq in young and old hepatocytes and find that, although lamin B1 resides at a large fraction of domains at both ages, a third of lamin B1-associated regions are bound exclusively at each age in vivo. Regions occupied by lamin B1 solely in young livers are enriched for the forkhead motif, bound by Foxa pioneer factors. We also show that Foxa2 binds more sites in Zmpste24 mutant mice, a progeroid laminopathy model, similar to increased Foxa2 occupancy in old livers. Aged and Zmpste24-deficient livers share several features, including nuclear lamina abnormalities, increased Foxa2 binding, de-repression of PPAR- and LXR-dependent gene expression, and fatty liver. In old livers, additional Foxa2 binding is correlated to loss of lamin B1 and heterochromatin (H3K9me3 occupancy) at these loci. Our observations suggest that changes at the nuclear lamina are linked to altered Foxa2 binding, enabling opening of chromatin and de-repression of genes encoding lipid synthesis and storage targets that contribute to etiology of hepatic steatosis.


Assuntos
Envelhecimento , Fator 3-beta Nuclear de Hepatócito/genética , Fígado/patologia , Lâmina Nuclear/genética , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA