Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 97(9): 092501, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17026356

RESUMO

The N = 28 shell closure has been investigated via the 46Ar(d,p)47Ar transfer reaction in inverse kinematics. Energies and spectroscopic factors of the neutron p(3/2), p(1/2), and f(5/2) states in 47Ar were determined and compared to those of the 49Ca isotone. We deduced a reduction of the N = 28 gap by 330(90) keV and spin-orbit weakenings of approximately 10(2) and 45(10)% for the f and p states, respectively. Such large variations for the f and p spin-orbit splittings could be accounted for by the proton-neutron tensor force and by the density dependence of the spin-orbit interaction, respectively. This contrasts with the picture of the spin-orbit interaction as a surface term only.

2.
Phys Rev Lett ; 91(16): 162503, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14611397

RESUMO

First beta- and gamma-spectroscopic decay studies of the N=82 r-process "waiting-point" nuclide 130Cd have been performed at CERN/ISOLDE using the highest achievable isotopic selectivity. Several nuclear-physics surprises have been discovered. The first one is the unanticipatedly high energy of 2.12 MeV for the [pi g(9/2) multiply sign in circle nu g(7/2)] 1(+) level in 130In, which is fed by the main Gamow-Teller transition. The second surprise is the rather high Q(beta) value of 8.34 MeV, which is in agreement only with recent mass models that include the phenomenon of N=82 shell quenching. Possible implications of these new results on the formation of the A approximately 130 r-process abundance peak are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA