Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 246: 484-495, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31200182

RESUMO

Managing and monitoring invasive alien species (IAS) is costly, and because resources are limited, prioritization decisions are required for planning and management. We present findings on plant pest prioritization for 63 established invader species of natural and grazing ecosystems of Queensland, Australia. We used an expert elicitation approach to assess risk (species occurrence, spread, and impact) and feasibility of control for each IAS. We elicit semi-quantitative responses from diverse expert stakeholders to score IAS on three management approaches (biocontrol, chemical and mechanical) in relation to cost, effectiveness and practicality, and incorporate uncertainty in expert inputs and model outputs. In the process, we look for promising management opportunities as well as seek general trends across species' ecological groups and management methods. Stakeholders were cautiously optimistic about the feasibility of managing IAS. Taking into consideration all factors, the overall feasibility of control was uncorrelated with the stakeholders' level of confidence. However, within individual management criterion, positive trend was observed for the same bivariate traits for chemical control, and negative trends for biocontrol and mechanical controls. Utility and confidence in IAS management options were in the order: chemical > biocontrol = mechanical, with practicality and effectiveness being the main driver components. Management feasibility differed significantly between IAS life forms but not between habitats invaded. Lastly, we combined IAS risk assessment and management feasibility scores to create a risk matrix to guide policy goals (i.e. eradication, spread containment, protection of sensitive sites, targeted control, site management, monitoring, and limited action). The matrix identifies promising species to target for each of these policy outcomes. Overall, our general approach illustrates (i) the importance of understanding the feasibility of IAS control actions and the factors that drive it, and (ii) demonstrates how quantifying management feasibility can be used to enhance traditional risk assessment rankings to improve policy outcomes.


Assuntos
Ecossistema , Espécies Introduzidas , Austrália , Estudos de Viabilidade , Queensland
2.
Am J Bot ; 101(9): 1423-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25253703

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance.• METHODS: Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• KEY RESULTS: Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• CONCLUSIONS: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.


Assuntos
Adaptação Fisiológica , Aptidão Genética , Espécies Introduzidas , Fenótipo , Folhas de Planta , Plantas/genética , Biomassa , Luz , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Plantas/anatomia & histologia , Queensland
3.
Plants (Basel) ; 10(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34579384

RESUMO

Navua sedge (Cyperus aromaticus (Ridley) Mattf. & Kukenth) is an invasive perennial sedge, native to tropical Africa, which is threatening many natural ecosystems and agroecosystems, especially in northern Queensland, Australia. Crop and pasture production have been impacted by Navua sedge and it is also directly causing reductions in dairy and beef production in affected regions. This review documents the biology, ecology and potential management options to minimise the spread and impact of Navua sedge. The weed reproduces both sexually (seeds) and vegetatively (via underground rhizomes). Its tiny seeds can be spread easily via wind, water, vehicles, farm machinery and animals, whilst the rhizomes assist with establishment of dense stands. The CLIMEX model (which uses distribution and climate data in native and novel ranges) indicates that in Australia, Navua sedge has the potential to spread further within Queensland and into the Northern Territory, New South Wales and Victoria. Several management strategies, including mechanical, chemical and agronomic methods, and their integration will have to be used to minimise agricultural production losses caused by Navua sedge, but most of these methods are currently either ineffective or uneconomical when used alone. Other management approaches, including biological control and mycoherbicides, are currently being explored. We conclude that a better understanding of the interaction of its physiological processes, ecological patterns and genetic diversity across a range of conditions found in the invaded and native habitats will help to contribute to and provide more effective integrated management approaches for Navua sedge.

4.
Ann Bot ; 106(2): 371-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534595

RESUMO

BACKGROUND AND AIMS: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. METHODS: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. KEY RESULTS: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energy-use efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. CONCLUSIONS: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.


Assuntos
Carbono/metabolismo , Folhas de Planta/metabolismo , Biomassa , Fotossíntese/fisiologia
5.
Ann Bot ; 102(5): 845-53, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18757449

RESUMO

BACKGROUND AND AIMS: This study examined level of causal relationships amongst functional traits in leaves and conjoint pitcher cups of the carnivorous Nepenthes species. METHODS: Physico-chemical properties, especially lignin content, construction costs, and longevity of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, northern Borneo were determined. KEY RESULTS: Longevity of these assimilatory organs was linked significantly to construction cost, lignin content and structural trait of tissue density, but these effects are non-additive. Nitrogen and phosphorus contents (indicators of Rubisco and other photosynthetic proteins), were poor predictors of organ longevity and construction cost, suggesting that a substantial allocation of biomass of the assimilatory organs in Nepenthes is to structural material optimized for prey capture, rigidity and escape from biotic and abiotic stresses rather than to light interception. Leaf payback time - a measure of net carbon revenue - was estimated to be 48-60 d. This is in line with the onset of substantial mortality by 2-3 months of tagged leaves in many of the Nepenthes species examined. However, this is a high ratio (i.e. a longer minimum payback time) compared with what is known for terrestrial, non-carnivorous plants in general (5-30 d). CONCLUSIONS: It is concluded that the leaf trait bivariate relationships within the Nepenthes genus, as in other carnivorous species (e.g. Sarraceniaceae), is substantially different from the global relationship documented in the Global Plant Trait Network.


Assuntos
Metabolismo Energético , Lignina/metabolismo , Sarraceniaceae/anatomia & histologia , Sarraceniaceae/crescimento & desenvolvimento , Bornéu , Brunei , Folhas de Planta/crescimento & desenvolvimento , Análise de Regressão , Sarraceniaceae/metabolismo , Fatores de Tempo
6.
Ann Bot ; 99(5): 895-906, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17452380

RESUMO

BACKGROUND AND AIMS: Species of the Nepenthaceae family are under-represented in studies of leaf traits and the consequent view of mineral nutrition and limitation in carnivorous plants. This study is aimed to complement existing data on leaf traits of carnivorous plants. METHODS: Physico-chemical properties, including construction costs (CC), of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, Northern Borneo were determined. KEY RESULTS: Stoichiometry analyses indicate that Nepenthes species are nitrogen limited. Most traits vary appreciably across species, but greater variations exist between the assimilatory organs. Organ mass per unit area, dry matter tissue concentration (density), nitrogen (N), phosphorus (P), carbon, heat of combustion (H(c)) and CC values were higher in the leaf relative to the pitcher, while organ thickness, potassium (K) and ash showed the opposite trend. Cross-species correlations indicate that joint rather than individual consideration of the leaf and the pitcher give better predictive relationships between variables, signalling tight coupling and functional interdependence of the two assimilatory organs. Across species, mass-based CC did not vary with N or P, but increases significantly with tissue density, carbon and H(c), and decreases with K and ash contents. Area-based CC gave the same trends (though weaker in strength) in addition to a significant positive correlation with tissue mass per unit area. CONCLUSIONS: The lower CC value for the pitcher is in agreement with the concept of low marginal cost for carnivory relative to conventional autotrophy. The poor explanatory power of N, P or N : P ratio with CC suggests that factors other than production of expensive photosynthetic machinery (which calls for a high N input), including concentrations of lignin, wax/lipids or osmoregulatory ions like K(+), may give a better explanation of the CC variation across Nepenthes species.


Assuntos
Magnoliaceae/anatomia & histologia , Magnoliaceae/metabolismo , Processos Autotróficos , Bornéu , Carbono/metabolismo , Metabolismo Energético , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Potássio/metabolismo , Especificidade da Espécie
7.
Am J Bot ; 94(12): 1951-62, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21636390

RESUMO

In rainforests, trunk size, strength, crown position, and geometry of a tree affect light interception and the likelihood of mechanical failure. Allometric relationships of tree diameter, wood density, and crown architecture vs. height are described for a diverse range of rainforest trees in Brunei, northern Borneo. The understory species follow a geometric model in their diameter-height relationship (slope, ß = 1.08), while the stress-elasticity models prevail (ß = 1.27-1.61) for the midcanopy and canopy/emergent species. These relationships changed with ontogeny, especially for the understory species. Within species, the tree stability safety factor (SSF) and relative crown width decreased exponentially with increasing tree height. These trends failed to emerge in across-species comparisons and were reversed at a common (low) height. Across species, the relative crown depth decreased with maximum potential height and was indistinguishable at a common (low) height. Crown architectural traits influence SSF more than structural property of wood density. These findings emphasize the importance of applying a common reference size in comparative studies and suggest that forest trees (especially the understory group) may adapt to low light by having deeper rather than wider crowns due to an efficient distribution and geometry of their foliage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA