Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 111(8): 1046-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21924413

RESUMO

BACKGROUND: Because of the warming climate urban temperature patterns have been receiving increased attention. Temperature within urban areas can vary depending on land cover, meteorological and other factors. High resolution satellite data can be used to understand this intra-urban variability, although they have been primarily studied to characterize urban heat islands at a larger spatial scale. OBJECTIVE: This study examined whether satellite-derived impervious surface and meteorological conditions from multiple sites can improve characterization of spatial variability of temperature within an urban area. METHODS: Temperature was measured at 17 outdoor sites throughout the Detroit metropolitan area during the summer of 2008. Kriging and linear regression were applied to daily temperatures and secondary information, including impervious surface and distance-to-water. Performance of models in predicting measured temperatures was evaluated by cross-validation. Variograms derived from several scenarios were compared to determine whether high-resolution impervious surface information could capture fine-scale spatial structure of temperature in the study area. RESULTS: Temperatures measured at the sites were significantly different from each other, and all kriging techniques generally performed better than the two linear regression models. Impervious surface values and distance-to-water generally improved predictions slightly. Restricting models to days with lake breezes and with less cloud cover also somewhat improved the predictions. In addition, incorporating high-resolution impervious surface information into cokriging or universal kriging enhanced the ability to characterize fine-scale spatial structure of temperature. CONCLUSIONS: Meteorological and satellite-derived data can better characterize spatial variability in temperature across a metropolitan region. The data sources and methods we used can be applied in epidemiological studies and public health interventions to protect vulnerable populations from extreme heat events.


Assuntos
Sistemas de Informação Geográfica , Temperatura Alta , Estações do Ano , Modelos Lineares , Michigan
2.
Environ Health Perspect ; 121(8): 925-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23777856

RESUMO

BACKGROUND: Land surface temperature (LST) and percent surface imperviousness (SI), both derived from satellite imagery, have been used to characterize the urban heat island effect, a phenomenon in which urban areas are warmer than non-urban areas. OBJECTIVES: We aimed to assess the correlations between LSTs and SI images with actual temperature readings from a ground-based network of outdoor monitors. METHODS: We evaluated the relationships among a) LST calculated from a 2009 summertime satellite image of the Detroit metropolitan region, Michigan; b) SI from the 2006 National Land Cover Data Set; and c) ground-based temperature measurements monitored during the same time period at 19 residences throughout the Detroit metropolitan region. Associations between these ground-based temperatures and the average LSTs and SI at different radii around the point of the ground-based temperature measurement were evaluated at different time intervals. Spearman correlation coefficients and corresponding p-values were calculated. RESULTS: Satellite-derived LST and SI values were significantly correlated with 24-hr average and August monthly average ground temperatures at all but two of the radii examined (100 m for LST and 0 m for SI). Correlations were also significant for temperatures measured between 0400 and 0500 hours for SI, except at 0 m, but not LST. Statistically significant correlations ranging from 0.49 to 0.91 were observed between LST and SI. CONCLUSIONS: Both SI and LST could be used to better understand spatial variation in heat exposures over longer time frames but are less useful for estimating shorter-term, actual temperature exposures, which can be useful for public health preparedness during extreme heat events.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Saúde Pública , Astronave , Sistemas de Informação Geográfica/instrumentação , Astronave/instrumentação , Temperatura
3.
Environ Int ; 46: 23-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22673187

RESUMO

Heat waves have been linked to excess mortality and morbidity, and are projected to increase in frequency and intensity with a warming climate. This study compares exposure metrics to trigger heat wave and health warning systems (HHWS), and introduces a novel multi-level hybrid clustering method to identify potential dangerously hot days. Two-level and three-level hybrid clustering analysis as well as common indices used to trigger HHWS, including spatial synoptic classification (SSC), and the 90th, 95th, and 99th percentiles of minimum and relative minimum temperature (using a 10 day reference period), were calculated using a summertime weather dataset in Detroit from 1976 to 2006. The days classified as 'hot' with hybrid clustering analysis, SSC, minimum and relative minimum temperature methods differed by method type. SSC tended to include the days with, on average, 2.5 °C lower daily minimum temperature and 5.3 °C lower dew point than days identified by other methods. These metrics were evaluated by comparing their performance in predicting excess daily mortality. The 99th percentile of minimum temperature was generally the most predictive, followed by the three-level hybrid clustering method, the 95th percentile of minimum temperature, SSC and others. Our proposed clustering framework has more flexibility and requires less substantial meteorological prior information than the synoptic classification methods. Comparison of these metrics in predicting excess daily mortality suggests that metrics thought to better characterize physiological heat stress by considering several weather conditions simultaneously may not be the same metrics that are better at predicting heat-related mortality, which has significant implications in HHWSs.


Assuntos
Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta , Saúde Pública/métodos , Tempo (Meteorologia) , Teorema de Bayes , Clima , Análise por Conglomerados , Previsões , Transtornos de Estresse por Calor/mortalidade , Humanos , Funções Verossimilhança , Michigan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA