Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Neuroimage ; 302: 120892, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39433113

RESUMO

Iron is the most abundant trace metal in the human brain and consistently shown elevated in prevalent neurological disorders. Because of its paramagnetism, brain iron can be assessed in vivo by quantitative MRI techniques such as R2* mapping and Quantitative Susceptibility Mapping (QSM). While Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has demonstrated good correlations of the total iron content to MRI parameters in gray matter, the relationship to ferritin levels as assessed by Electron Paramagnetic Resonance (EPR) has not been systematically analyzed. Therefore, we included 15 postmortem subjects (age: 26-91 years) which underwent quantitative in-situ MRI at 7 Tesla within a post-mortem interval of 24 h after death. ICP-MS and EPR were used to measure the total iron and ferritin content in 8 selected gray matter (GM) structures and the correlations to R2* and QSM were calculated. We found that R2* and QSM in the iron rich basal ganglia and the red nucleus were highly correlated with iron (R² > 0.7) and ferritin (R² > 0.6), whereas those correlations were lost in cortical regions and the hippocampus. The neuromelanin-rich substantia nigra showed a different behavior with a correlation with total iron only (R² > 0.5) but not with ferritin. Although qualitative results were similar for both qMRI techniques the observed correlation was always stronger for QSM than R2*. This study demonstrated the quantitative correlations between R2*, QSM, total iron and ferritin levels in an in-situ MRI setup and therefore aids to understand how molecular forms of iron are responsible for MRI contrast generation.

2.
Int J Obes (Lond) ; 47(3): 165-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585494

RESUMO

BACKGROUND: Obesity is a disease that may involve disrupted connectivity of brain networks. Bariatric surgery is an effective treatment for obesity, and the positive effects on obesity-related conditions may be enhanced by exercise. Herein, we aimed to investigate the possible synergistic effects of Roux-en-Y Gastric Bypass (RYGB) and exercise training on brain functional networks. METHODS: Thirty women eligible for bariatric surgery were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 15, age = 41.0 ± 7.3 years) or RYGB plus Exercise Training (RYGB + ET: n = 15, age = 41.9 ± 7.2 years). Clinical, laboratory, and brain functional connectivity parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6-month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). RESULTS: Exercise superimposed on bariatric surgery (RYGB + ET) increased connectivity between hypothalamus and sensorial regions (seed-to-voxel analyses of hypothalamic connectivity), and decreased default mode network (DMN) and posterior salience (pSAL) network connectivity (ROI-to-ROI analyses of brain networks connectivity) when compared to RYGB alone (all p-FDR < 0.05). Increases in basal ganglia (BG) network connectivity were only observed in the exercised training group (within-group analyses). CONCLUSION: Exercise training is an important component in the management of post-bariatric patients and may improve the hypothalamic connectivity and brain functional networks that are involved in controlling food intake. TRIAL REGISTRATION: Clinicaltrial.gov: NCT02441361.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Obesidade Mórbida , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Exercício Físico , Obesidade/cirurgia , Encéfalo , Hipotálamo
3.
J Nutr ; 152(3): 663-670, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34888674

RESUMO

BACKGROUND: Approximately 10% of adolescents worldwide are overweight or obese, hence the urgent and universal need to elucidate possible mechanisms that lead to obesity in the adolescent population. OBJECTIVES: We examined the hypothalamic metabolism and its relationship with physical development in obese and eutrophic adolescents. METHODS: We performed a case-control study with 115 adolescents between 11 and 18 years of age, to compare obese (BMI z-score ≥ 2) and nonobese individuals (eutrophic controls; BMI z-score ≤ 1). The following hypothalamic metabolite ratios were examined as primary outcomes: glutamate/creatine (Cr), the sum of glutamate and glutamine/Cr, N-acetylaspartate (NAA)/Cr, myoinositol/Cr, and total choline/Cr (glycerophosphocholine +  phosphocholine/Cr), quantified by magnetic resonance spectroscopy. BMI z-scores, pubertal status, and scores on the Yale Food Addiction Scale, the Binge Eating Scale, and the Child Depression Inventory were assessed as secondary outcomes. Pearson coefficients (r) or nonparametric Spearman correlation (rho) analyses were performed between hypothalamic metabolite ratios and other parameters, such as BMI z-scores, physical development, food habits, depression symptoms, and serum protein concentrations (cytokines, hormones, and neuropeptides). RESULTS: Adolescents with obesity showed a lower hypothalamic NAA/Cr ratio (0.70 ± 0.19) compared to their eutrophic counterparts (0.84 ± 0.20; P = 0.004). The NAA/Cr ratio was negatively correlated with BMI z-scores (r = -0.25; P = 0.03) and serum insulin (rho = -0.27; P = 0.04), C-peptide (rho = -0.26; P = 0.04), amylin (r = -0.27; P = 0.04), ghrelin (rho = -0.30; P = 0.02), and neuropeptide Y (r = -0.27; P = 0.04). Also, the NAA/Cr ratio was positively correlated with circulating IL-8 levels (rho = 0.26; P = 0.04). CONCLUSIONS: High BMI z-scores are associated with lower hypothalamic NAA/Cr ratios. The negative correlations found between the NAA/Cr ratio and serum cytokines, hormones, and neuropeptides suggest a broad cross-talk linking hormonal imbalances, neurohumoral alterations, and hypothalamic functions in adolescents with obesity.


Assuntos
Creatina , Obesidade Infantil , Adolescente , Ácido Aspártico/análogos & derivados , Estudos de Casos e Controles , Criança , Colina/metabolismo , Creatina/metabolismo , Citocinas , Ácido Glutâmico/metabolismo , Hormônios , Humanos
4.
Neurol Sci ; 43(2): 1343-1350, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34264413

RESUMO

BACKGROUND AND AIM: Diffusion tensor imaging (DTI) parameters in the corpus callosum have been suggested to be a biomarker for prognostic outcomes in individuals with diffuse axonal injury (DAI). However, differences between the DTI parameters on moderate and severe trauma in DAI over time are still unclear. A secondary goal was to study the association between the changes in the DTI parameters, anxiety, and depressive scores in DAI over time. METHODS: Twenty subjects were recruited from a neurological outpatient clinic and evaluated at 2, 6, and 12 months after the brain injury and compared to matched age and sex healthy controls regarding the DTI parameters in the corpus callosum. State-Trace Anxiety Inventory and Beck Depression Inventory were used to assess psychiatric outcomes in the TBI group over time. RESULTS: Differences were observed in the fractional anisotropy and mean diffusivity of the genu, body, and splenium of the corpus callosum between DAI and controls (p < 0.02). Differences in both parameters in the genu of the corpus callosum were also detected between patients with moderate and severe DAI (p < 0.05). There was an increase in the mean diffusivity values and the fractional anisotropy decrease in the DAI group over time (p < 0.02). There was no significant correlation between changes in the fractional anisotropy and mean diffusivity across the study and psychiatric outcomes in DAI. CONCLUSION: DTI parameters, specifically the mean diffusivity in the corpus callosum, may provide reliable characterization and quantification of differences determined by the brain injury severity. No correlation was observed with DAI parameters and the psychiatric outcome scores.


Assuntos
Lesões Encefálicas Traumáticas , Imagem de Tensor de Difusão , Anisotropia , Corpo Caloso/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos
5.
Neuroimage ; 242: 118477, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403742

RESUMO

PURPOSE: A method named DECOMPOSE-QSM is developed to decompose bulk susceptibility measured with QSM into sub-voxel paramagnetic and diamagnetic components based on a three-pool complex signal model. METHODS: Multi-echo gradient echo signal is modeled as a summation of three weighted exponentials corresponding to three types of susceptibility sources: reference susceptibility, diamagnetic and paramagnetic susceptibility relative to the reference. Paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) maps are constructed to represent the sub-voxel compartments by solving for linear and nonlinear parameters in the model. RESULTS: Numerical forward simulation and phantom validation confirmed the ability of DECOMPOSE-QSM to separate the mixture of paramagnetic and diamagnetic components. The PCS obtained from temperature-variant brainstem imaging follows the Curie's Law, which further validated the model and the solver. Initial in vivo investigation of human brain images showed the ability to extract sub-voxel PCS and DCS sources that produce visually enhanced contrast between brain structures comparing to threshold QSM.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Neuroimagem , Imagens de Fantasmas
6.
Eur Arch Psychiatry Clin Neurosci ; 271(3): 537-547, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31993746

RESUMO

Bipolar disorder (BD) is characterized by unstable mood states ranging from mania to depression. Although there is some evidence that mood instability may result from an imbalance between excitatory glutamatergic and inhibitory GABA-ergic neurotransmission, few proton magnetic resonance spectroscopy (1H-MRS) studies have measured these two neurometabolites simultaneously in BD. The enzyme glutamic acid decarboxylase (GAD1) catalyzes the decarboxylation of glutamate (Glu) to GABA, and its single nucleotide polymorphisms (SNPs) might influence Glu/GABA ratio. Thus, we investigated Glu/GABA ratio in the dorsal anterior cingulate cortex (dACC) of euthymic BD type I patients and healthy controls (HC), and assessed the influence of both mood stabilizers and GAD1 SNPs on this ratio. Eighty-eight subjects (50 euthymic BD type I patients and 38 HC) underwent 3T 1H-MRS in the dACC (2 × 2 × 4.5 cm3) using a two-dimensional JPRESS sequence and all subjects were genotyped for 4 SNPs in the GAD1 gene. BD patients had lower dACC Glu/GABA ratio compared to HC, where this was influenced by anticonvulsant and antipsychotic medications, but not lithium. The presence of GAD1 rs1978340 allele A was associated with higher Glu/GABA ratio in BD, while patients without this allele taking mood stabilizers had a lower Glu/GABA ratio. The lowering of dACC Glu/GABA could be one explanation for the mood stabilizing action of anticonvulsants and antipsychotics in BD type I euthymia. Therefore, this putative role of Glu/GABA ratio and the influence of GAD1 genotype interacting with mood stabilization medication should be confirmed by further studies involving larger samples and other mood states.ClincalTrials.gov registration: NCT01237158.


Assuntos
Anticonvulsivantes/farmacologia , Antipsicóticos/farmacologia , Transtorno Bipolar/metabolismo , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adolescente , Adulto , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Feminino , Glutamato Descarboxilase/genética , Giro do Cíngulo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
7.
Brain Inj ; 35(3): 275-284, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33507820

RESUMO

Objective: The goal is to evaluate longitudinally with diffusion tensor imaging (DTI) the integrity of cerebral white matter in patients with moderate and severe DAI and to correlate the DTI findings with cognitive deficits.Methods: Patients with DAI (n = 20) were scanned at three timepoints (2, 6 and 12 months) after trauma. A healthy control group (n = 20) was evaluated once with the same high-field MRI scanner. The corpus callosum (CC) and the bilateral superior longitudinal fascicles (SLFs) were assessed by deterministic tractography with ExploreDTI. A neuropschychological evaluation was also performed.Results: The CC and both SLFs demonstrated various microstructural abnormalities in between-groups comparisons. All DTI parameters demonstrated changes across time in the body of the CC, while FA (fractional anisotropy) increases were seen on both SLFs. In the splenium of the CC, progressive changes in the mean diffusivity (MD) and axial diffusivity (AD) were also observed. There was an improvement in attention and memory along time. Remarkably, DTI parameters demonstrated several correlations with the cognitive domains.Conclusions: Our findings suggest that microstructural changes in the white matter are dynamic and may be detectable by DTI throughout the first year after trauma. Likewise, patients also demonstrated improvement in some cognitive skills.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Axonal Difusa , Substância Branca , Anisotropia , Encéfalo , Cognição , Lesão Axonal Difusa/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Substância Branca/diagnóstico por imagem
8.
BMC Psychiatry ; 20(1): 68, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059696

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2-3% and is a leading cause of global disability. Brain circuit abnormalities in individuals with OCD have been identified, but important knowledge gaps remain. The goal of the new global initiative described in this paper is to identify robust and reproducible brain signatures of measurable behaviors and clinical symptoms that are common in individuals with OCD. A global approach was chosen to accelerate discovery, to increase rigor and transparency, and to ensure generalizability of results. METHODS: We will study 250 medication-free adults with OCD, 100 unaffected adult siblings of individuals with OCD, and 250 healthy control subjects at five expert research sites across five countries (Brazil, India, Netherlands, South Africa, and the U.S.). All participants will receive clinical evaluation, neurocognitive assessment, and magnetic resonance imaging (MRI). The imaging will examine multiple brain circuits hypothesized to underlie OCD behaviors, focusing on morphometry (T1-weighted MRI), structural connectivity (Diffusion Tensor Imaging), and functional connectivity (resting-state fMRI). In addition to analyzing each imaging modality separately, we will also use multi-modal fusion with machine learning statistical methods in an attempt to derive imaging signatures that distinguish individuals with OCD from unaffected siblings and healthy controls (Aim #1). Then we will examine how these imaging signatures link to behavioral performance on neurocognitive tasks that probe these same circuits as well as to clinical profiles (Aim #2). Finally, we will explore how specific environmental features (childhood trauma, socioeconomic status, and religiosity) moderate these brain-behavior associations. DISCUSSION: Using harmonized methods for data collection and analysis, we will conduct the largest neurocognitive and multimodal-imaging study in medication-free subjects with OCD to date. By recruiting a large, ethno-culturally diverse sample, we will test whether there are robust biosignatures of core OCD features that transcend countries and cultures. If so, future studies can use these brain signatures to reveal trans-diagnostic disease dimensions, chart when these signatures arise during development, and identify treatments that target these circuit abnormalities directly. The long-term goal of this research is to change not only how we conceptualize OCD but also how we diagnose and treat it.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Internacionalidade , Imageamento por Ressonância Magnética , Estudos Multicêntricos como Assunto/métodos , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/patologia , Encéfalo/fisiopatologia , Brasil , Estudos de Casos e Controles , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Países Baixos , Transtorno Obsessivo-Compulsivo/patologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Projetos de Pesquisa , Irmãos/psicologia , África do Sul , Estados Unidos , Adulto Jovem
9.
IEEE Trans Med Imaging ; 43(3): 1113-1124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917515

RESUMO

The short association fibers or U-fibers travel in the superficial white matter (SWM) beneath the cortical layer. While the U-fibers play a crucial role in various brain disorders, there is a lack of effective tools to reconstruct their highly curved trajectory from diffusion MRI (dMRI). In this work, we propose a novel surface-based framework for the probabilistic tracking of fibers on the triangular mesh representation of the SWM. By deriving a closed-form solution to transform the spherical harmonics (SPHARM) coefficients of 3D fiber orientation distributions (FODs) to local coordinate systems on each triangle, we develop a novel approach to project the FODs onto the tangent space of the SWM. After that, we utilize parallel transport to realize the intrinsic propagation of streamlines on SWM following probabilistically sampled fiber directions. Our intrinsic and surface-based method eliminates the need to perform the necessary but challenging sharp turns in 3D compared with conventional volume-based tractography methods. Using data from the Human Connectome Project (HCP), we performed quantitative comparisons to demonstrate the proposed algorithm can more effectively reconstruct the U-fibers connecting the precentral and postcentral gyrus than previous methods. Quantitative validations were then performed on post-mortem MRIs to show the reconstructed U-fibers from our method more faithfully follow the SWM than volume-based tractography. Finally, we applied our algorithm to study the parietal U-fiber connectivity changes in autosomal dominant Alzheimer's disease (ADAD) patients and successfully detected significant associations between U-fiber connectivity and disease severity.


Assuntos
Conectoma , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
10.
Diagnostics (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39001252

RESUMO

Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.

11.
Sci Rep ; 14(1): 6287, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491154

RESUMO

The absence of a natural animal model is one of the main challenges in Alzheimer's disease research. Despite the challenges of using nonhuman primates in studies, these animals can bridge mouse models and humans, as nonhuman primates are phylogenetically closer to humans and can spontaneously develop AD-type pathology. The capuchin monkey, a New World primate, has recently attracted attention due to its skill in creating and using instruments. We analyzed one capuchin brain using structural 7 T MRI and performed a neuropathological evaluation of three animals. Alzheimer-type pathology was found in the two of the capuchins. Widespread ß-amyloid pathology was observed, mainly in focal deposits with variable morphology and a high density of mature plaques. Notably, plaque-associated dystrophic neurites associated with disruption of axonal transport and early cytoskeletal alteration were frequently found. Unlike in other species of New World monkeys, cerebral arterial angiopathy was not the predominant form of ß-amyloid pathology. Additionally, abnormal aggregates of hyperphosphorylated tau, resembling neurofibrillary pathology, were observed in the temporal and frontal cortex. Astrocyte hypertrophy surrounding plaques was found, suggesting a neuroinflammatory response. These findings indicate that aged capuchin monkeys can spontaneously develop Alzheimer-type pathology, indicating that they may be an advantageous animal model for research in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Cebinae , Humanos , Animais , Camundongos , Idoso , Doença de Alzheimer/patologia , Cebus , Haplorrinos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/patologia , Proteínas tau/metabolismo
12.
Brain Imaging Behav ; 17(3): 282-293, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36630045

RESUMO

Brain-derived neurotrophic factor (BDNF) is the most abundant brain neurotrophin and plays a critical role in neuronal growth, survival and plasticity, implicated in the pathophysiology of Bipolar Disorders (BD). The single-nucleotide polymorphism in the BDNF gene (BDNF rs6265) has been associated with decreased hippocampal BDNF secretion and volume in met carriers in different populations, although the val allele has been reported to be more frequent in BD patients. The anterior cingulate cortex (ACC) is a key center integrating cognitive and affective neuronal connections, where consistent alterations in brain metabolites such as Glx (Glutamate + Glutamine) and N-acetylaspartate (NAA) have been consistently reported in BD. However, little is known about the influence of BDNF rs6265 on neurochemical profile in the ACC of Healthy Controls (HC) and BD subjects. The aim of this study was to assess the influence of BDNF rs6265 on ACC neurometabolites (Glx, NAA and total creatine- Cr) in 124 euthymic BD type I patients and 76 HC, who were genotyped for BDNF rs6265 and underwent a 3-Tesla proton magnetic resonance imaging and spectroscopy scan (1 H-MRS) using a PRESS ACC single-voxel (8cm3) sequence. BDNF rs6265 polymorphism showed a significant two-way interaction (diagnosis × genotype) in relation to NAA/Cr and total Cr. While met carriers presented increased NAA/Cr in HC, BD-I subjects with the val allele revealed higher total Cr, denoting an enhanced ACC metabolism likely associated with increased glutamatergic metabolites observed in BD-I val carriers. However, these results were replicated only in men. Therefore, our results support evidences that the BDNF rs6265 polymorphism exerts a complex pleiotropic effect on ACC metabolites influenced by the diagnosis and sex.


Assuntos
Transtorno Bipolar , Masculino , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Giro do Cíngulo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único/genética
13.
J Magn Reson Open ; 14-152023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37006464

RESUMO

Quantitative Susceptibility Mapping (QSM) is an established Magnetic Resonance Imaging (MRI) technique with high potential in brain iron studies associated to several neurodegenerative diseases. Unlike other MRI techniques, QSM relies on phase images to estimate tissue's relative susceptibility, therefore requiring a reliable phase data. Phase images from a multi-channel acquisition should be reconstructed in a proper way. On this work it was compared the performance of combination of phase matching algorithms (MCPC3D-S and VRC) and phase combination methods based on a complex weighted sum of phases, considering the magnitude at different powers (k = 0 to 4) as the weighting factor. These reconstruction methods were applied in two datasets: a simulated brain dataset for a 4-coil array and data of 22 postmortem subjects acquired at a 7T scanner using a 32 channels coil. For the simulated dataset, differences between the ground truth and the Root Mean Squared Error (RMSE) were evaluated. For both simulated and postmortem data, the mean (MS) and standard deviation (SD) of susceptibility values of five deep gray matter regions were calculated. For the postmortem subjects, MS and SD were statistically compared across all subjects. A qualitative analysis indicated no differences between methods, except for the Adaptive approach on postmortem data, which showed intense artifacts. In the 20% noise level case, the simulated data showed increased noise in central regions. Quantitative analysis showed that both MS and SD were not statistically different when comparing k = 1 and k = 2 on postmortem brain images, however visual inspection showed some boundaries artifacts on k = 2. Furthermore, the RMSE decreased (on regions near the coils) and increased (on central regions and on overall QSM) with increasing k. In conclusion, for reconstruction of phase images from multiple coils with no reference available, alternative methods are needed. In this study it was found that overall, the phase combination with k = 1 is preferred over other powers of k.

14.
Neurotrauma Rep ; 4(1): 551-559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636333

RESUMO

Soccer players are at risk of suffering cranial injuries in the short and long term. There is growing concern that this may lead to traumatic brain injury in soccer players. Magnetic resonance spectroscopy (MRS) is an analytical method that enables the measurement of changes in brain metabolites that usually occur before significant structural changes. This study aimed to use MRS to compare variations in brain metabolite levels between retired soccer players and a control group. Twenty retired professional soccer players and 22 controls underwent magnetic resonance imaging, including MRS sequences and Mini-Mental State Examination (MMSE). Metabolite analysis was conducted based on absolute concentration and relative ratios. N-acetyl-aspartate, choline, glutamate, glutamine, and myoinositol were the metabolites of interest for the statistical analysis. Retired soccer players had an average age of 57.8 years, whereas the control group had an average age of 63.2 years. Median cognitive evaluation score, assessed using the MMSE, was 28 [26-29] for athletes and 29 [28-30] for controls (p = 0.01). Uni- and multi-variate analyses of the absolute concentration of metabolites (mM) between former athletes and controls did not yield any statistically significant results. Comparison of metabolites to creatine ratio concentrations did not yield any statistically significant results. There were no changes in concentrations of brain metabolites that indicated brain metabolic changes in retired soccer players compared with controls.

15.
Eur Neuropsychopharmacol ; 59: 26-35, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544990

RESUMO

Abnormalities in Ca2+ homeostasis in Bipolar Disorders (BD) have been associated with impairments in glutamatergic receptors and voltage-gated calcium channels. Increased anterior cingulate cortex (ACC) glutamatergic neurometabolites have been consistently disclosed in BD by proton magnetic resonance spectroscopy (1H-MRS). A single nucleotide polymorphism (SNP) in the CACNA1C gene (rs1006737), which encodes the alpha 1-C subunit of the L-type calcium channel, has been associated with BD and is reported to modulate intra-cellular Ca2+. Thus, this study aimed to explore the association of the CACNA1C genotype with ACC glutamatergic metabolites measured by 1H-MRS in both BD and HC subjects. A total of 194 subjects (121 euthymic BD type I patients and 73 healthy controls (HC) were genotyped for CACNA1C rs1006737, underwent a 3-Tesla 1H-MRS imaging examination and ACC glutamatergic metabolite were assessed. We found overall increased glutamatergic metabolites in AA carriers in BD. Specifically, higher Glx/Cr was observed in subjects with the AA genotype compared to both AG and GG in the overall sample (BD + HC). Also, female individuals in the BD group with AA genotype were found to have higher Glx/Cr compared to those with other genotypes. CACNA1C AA carriers in use of anticonvulsant medication had higher estimated Glutamine (Glx-Glu) than the other genotypes. Thus, this study suggest an association between calcium channel genetics and increased glutamatergic metabolites in BD, possibly playing a synergic role in intracellular Ca2+ overload and excitotoxicity.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/uso terapêutico , Feminino , Ácido Glutâmico/metabolismo , Glutamina/genética , Glutamina/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Espectroscopia de Prótons por Ressonância Magnética
16.
Brain Behav ; 12(3): e2490, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103410

RESUMO

BACKGROUND: Diffuse axonal injury (DAI) is a frequent mechanism of traumatic brain injury (TBI) that triggers a sequence of parenchymal changes that progresses from focal axonal shear injuries up to inflammatory response and delayed axonal disconnection. OBJECTIVE: The main purpose of this study is to evaluate changes in the axonal/myelinic content and the brain volume up to 12 months after TBI and to correlate these changes with neuropsychological results. METHODS: Patients with DAI (n = 25) were scanned at three time points after trauma (2, 6, and 12 months), and the total brain volume (TBV), gray matter volume, and white matter volume (WMV) were calculated in each time point. The magnetization transfer ratio (MTR) for the total brain (TB MTR), gray matter (GM MTR), and white matter (WM MTR) was also quantified. In addition, Hopkins verbal learning test (HVLT), Trail Making Test (TMT), and Rey-Osterrieth Complex Figure test were performed at 6 and 12 months after the trauma. RESULTS: There was a significant reduction in the mean TBV, WMV, TB MTR, GM MTR, and WM MTR between time points 1 and 3 (p < .05). There was also a significant difference in HVLT-immediate, TMT-A, and TMT-B scores between time points 2 and 3. The MTR decline correlated more with the cognitive dysfunction than the volume reduction. CONCLUSION: A progressive axonal/myelinic rarefaction and volume loss were characterized, especially in the white matter (WM) up to 1 year after the trauma. Despite that, specific neuropsychological tests revealed that patients' episodic verbal memory, attention, and executive function improved during the study. The current findings may be valuable in developing long-term TBI rehabilitation management programs.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Axonal Difusa , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Cognição , Lesão Axonal Difusa/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
17.
Arq Neuropsiquiatr ; 80(3): 280-288, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35319666

RESUMO

BACKGROUND: Diffuse axonal injury occurs with high acceleration and deceleration forces in traumatic brain injury (TBI). This lesion leads to disarrangement of the neuronal network, which can result in some degree of deficiency. The Extended Glasgow Outcome Scale (GOS-E) is the primary outcome instrument for the evaluation of TBI victims. Diffusion tensor imaging (DTI) assesses white matter (WM) microstructure based on the displacement distribution of water molecules. OBJECTIVE: To investigate WM microstructure within the first year after TBI using DTI, the patient's clinical outcomes, and associations. METHODS: We scanned 20 moderate and severe TBI victims at 2 months and 1 year after the event. Imaging processing was done with the FMRIB software library; we used the tract-based spatial statistics software yielding fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) for statistical analyses. We computed the average difference between the two measures across subjects and performed a one-sample t-test and threshold-free cluster enhancement, using a corrected p-value < 0.05. Clinical outcomes were evaluated with the GOS-E. We tested for associations between outcome measures and significant mean FA clusters. RESULTS: Significant clusters of altered FA were identified anatomically using the JHU WM atlas. We found increasing spotted areas of FA with time in the right brain hemisphere and left cerebellum. Extensive regions of increased MD, RD, and AD were observed. Patients presented an excellent overall recovery. CONCLUSIONS: There were no associations between FA and outcome scores, but we cannot exclude the existence of a small to moderate association.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Axonal Difusa , Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Lesão Axonal Difusa/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
18.
Insights Imaging ; 13(1): 7, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032223

RESUMO

BACKGROUND: Brain abnormalities are a concern in COVID-19, so we used minimally invasive autopsy (MIA) to investigate it, consisting of brain 7T MR and CT images and tissue sampling via transethmoidal route with at least three fragments: the first one for reverse transcription polymerase chain reaction (RT-PCR) analysis and the remaining fixed and stained with hematoxylin and eosin. Two mouse monoclonal anti-coronavirus (SARS-CoV-2) antibodies were employed in immunohistochemical (IHC) reactions. RESULTS: Seven deceased COVID-19 patients underwent MIA with brain MR and CT images, six of them with tissue sampling. Imaging findings included infarcts, punctate brain hemorrhagic foci, subarachnoid hemorrhage and signal abnormalities in the splenium, basal ganglia, white matter, hippocampi and posterior cortico-subcortical. Punctate brain hemorrhage was the most common finding (three out of seven cases). Brain histological analysis revealed reactive gliosis, congestion, cortical neuron eosinophilic degeneration and axonal disruption in all six cases. Other findings included edema (5 cases), discrete perivascular hemorrhages (5), cerebral small vessel disease (3), perivascular hemosiderin deposits (3), Alzheimer type II glia (3), abundant corpora amylacea (3), ischemic foci (1), periventricular encephalitis foci (1), periventricular vascular ectasia (1) and fibrin thrombi (1). SARS-CoV-2 RNA was detected with RT-PCR in 5 out of 5 and IHC in 6 out 6 patients (100%). CONCLUSIONS: Despite limited sampling, MIA was an effective tool to evaluate underlying pathological brain changes in deceased COVID-19 patients. Imaging findings were varied, and pathological features corroborated signs of hypoxia, alterations related to systemic critically ill and SARS-CoV-2 brain invasion.

19.
Eur J Appl Physiol ; 111(5): 749-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20976468

RESUMO

Creatine supplementation may have a therapeutic role in diabetes, but it is uncertain whether this supplement is safe for kidney function. The aim of this study was to investigate the effects of creatine supplementation on kidney function in type 2 diabetic patients. A randomized, double-blind, placebo-controlled trial was performed. The patients were randomly allocated to receive either creatine or placebo for 12 weeks. All the patients underwent exercise training throughout the trial. Subjects were assessed at baseline and after the intervention. Blood samples and 24-h urine samples were obtained for kidney function assessments. Additionally, (51)Cr-EDTA clearance was performed. To ensure the compliance with creatine intake, we also assessed muscle phosphorylcreatine content. The creatine group presented higher muscle phosphorylcreatine content when compared to placebo group (CR Pre 44 ± 10, Post 70 ± 18 mmol/kg/wt; PL Pre 52 ± 13, Post 46 ± 13 mmol/kg/wt; p = 0.03; estimated difference between means 23.6; 95% confidence interval 1.42-45.8). No significant differences were observed for (51)Cr-EDTA clearance (CR Pre 90.4 ± 16.9, Post 96.1 ± 15.0 mL/min/1.73 m(2); PL Pre 97.9 ± 21.6, Post 96.4 ± 26.8 mL/min/1.73 m(2); p = 0.58; estimated difference between means -0.3; 95% confidence interval -24.9 to 24.2). Creatinine clearance, serum and urinary urea, electrolytes, proteinuria, and albuminuria were unchanged. CR supplementation does not affect kidney function in type 2 diabetic patients, opening a window of opportunities to explore its promising therapeutic role in this population. ClinicalTrials.gov registration number: NCT00992043.


Assuntos
Creatina/administração & dosagem , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Creatina/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/urina , Método Duplo-Cego , Feminino , Humanos , Rim/fisiologia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade
20.
Artigo em Inglês | MEDLINE | ID: mdl-29789269

RESUMO

BACKGROUND: Bipolar disorder is a chronic and recurrent illness characterized by depressive and manic episodes. Proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated glutamate (Glu) system abnormalities in BD, but it is unclear how Glu varies among mood states and how medications modulate it. The objective of this study was to investigate the influence of mood stabilizers on anterior cingulate cortex Glu levels using 1H-MRS during euthymia. METHODS: One hundred twenty-eight bipolar I disorder (BDI) euthymic subjects and 80 healthy control subjects underwent 3T brain 1H-MRS imaging examination including acquisition of an anterior cingulate cortex single voxel (8 cm3) 1H-MRS, based on a point resolved spectroscopy (PRESS) sequence with an echo time of 80 ms and a repetition time of 1500 ms (BIPUSP MRS study). The Glu system was described by measuring Glu and the sum of Glu and glutamine (Glx) using creatine (Cre) as a reference. RESULTS: Euthymic BDI subjects presented with higher ratios of Glu/Cre and Glx/Cre compared to healthy control subjects. Glu/Cre ratios were lower among patients using anticonvulsants, while Glx/Cre did not differ between the two groups. Lithium, antipsychotics, and antidepressants did not influence Glu/Cre or Glx/Cre. CONCLUSIONS: We reported Glu/Cre and Glx abnormalities in the largest sample of euthymic BDI patients studied by 1H-MRS to date. Our data indicate that both Glu/Cre and Glx/Cre are elevated in BDI during euthymia regardless of medication effects, reinforcing the hypothesis of glutamatergic abnormalities in BD. Furthermore, we found an effect of anticonvulsants on Glu/Cre during euthymia, which might indicate a mechanism of mood stabilization in BD.


Assuntos
Afeto/efeitos dos fármacos , Transtorno Bipolar/tratamento farmacológico , Ácido Glutâmico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adolescente , Adulto , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacologia , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antimaníacos/metabolismo , Antimaníacos/farmacologia , Antipsicóticos/metabolismo , Transtorno Bipolar/diagnóstico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtorno Ciclotímico/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA