Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 44(6): 997-1009, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15603742

RESUMO

The requirement for transcription during long-lasting plasticity indicates that signals generated at the synapse must be transported to the nucleus. We have investigated whether the classical active nuclear import pathway mediates intracellular retrograde signal transport in Aplysia sensory neurons and rodent hippocampal neurons. We found that importins localize to distal neuronal processes, including synaptic compartments, where they are well positioned to mediate synapse to nucleus signaling. In Aplysia, stimuli known to produce long-lasting but not short-lasting facilitation triggered importin nuclear translocation. In hippocampal neurons, NMDA receptor activation but not depolarization induced importin nuclear translocation. We further showed that LTP-inducing stimuli recruited active nuclear import in hippocampal slices. Together with our finding that long-term facilitation of Aplysia sensory-motor synapses required active nuclear import, our results indicate that regulation of the active nuclear import pathway plays a critical role in transporting synaptically generated signals into the nucleus during learning-related forms of plasticity.


Assuntos
Aplysia/fisiologia , Núcleo Celular/fisiologia , Carioferinas/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , alfa Carioferinas/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Aplysia/metabolismo , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Carioferinas/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacologia , Sinapses/efeitos dos fármacos , alfa Carioferinas/metabolismo
2.
Curr Opin Neurobiol ; 16(3): 329-35, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16690311

RESUMO

The polarized morphology of neurons poses a particular challenge to intracellular signal transduction. Local signals generated at distal sites must be retrogradely transported to the nucleus to produce persistent changes in neuronal function. Such communication of signals between distal neuronal compartments and the nucleus occurs during axon guidance, synapse formation, synaptic plasticity and following neuronal injury. Recent studies have begun to delineate a role for the active nuclear import pathway in transporting signals from axons and dendrites to the nucleus. In this pathway, soluble cargo proteins are recognized by nuclear transport carriers, called importins, which mediate their translocation from the cytoplasm into the nucleus. In neurons, importins might serve an additional function by carrying signals from distal sites to the soma.


Assuntos
Sistema Nervoso Central/metabolismo , Carioferinas/metabolismo , Neurônios/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Núcleo Celular/metabolismo , Sistema Nervoso Central/citologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Humanos , Neurônios/citologia , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
3.
Neuron ; 98(1): 127-141.e7, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621484

RESUMO

Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target. Vamp1 is strongly downregulated in Rbfox1 Nes-cKO mice due to loss of 3' UTR binding by RBFOX1. Cytoplasmic Rbfox1 stimulates Vamp1 expression in part by blocking microRNA-9. We find that Vamp1 is specifically expressed in inhibitory neurons, and that both Vamp1 knockdown and Rbfox1 loss lead to decreased inhibitory synaptic transmission and E/I imbalance. Re-expression of Vamp1 selectively within interneurons rescues the electrophysiological changes in the Rbfox1 cKO, indicating that Vamp1 loss is a major contributor to the Rbfox1 Nes-cKO phenotype. The regulation of interneuron-specific Vamp1 by Rbfox1 provides a paradigm for broadly expressed RNA-binding proteins performing specialized functions in defined neuronal subtypes.


Assuntos
Inibição Neural/fisiologia , Neurônios/metabolismo , Fatores de Processamento de RNA/fisiologia , Transmissão Sináptica/fisiologia , Proteína 1 Associada à Membrana da Vesícula/biossíntese , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/química , Fatores de Processamento de RNA/análise , Fatores de Processamento de RNA/deficiência , Proteínas SNARE/análise , Proteínas SNARE/biossíntese , Proteína 1 Associada à Membrana da Vesícula/análise
4.
Elife ; 62017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891791

RESUMO

Neuronal ApoE receptors are linked to learning and memory, but the pathways governing their abundance, and the mechanisms by which they affect the function of neural circuits are incompletely understood. Here we demonstrate that the E3 ubiquitin ligase IDOL determines synaptic ApoER2 protein levels in response to neuronal activation and regulates dendritic spine morphogenesis and plasticity. IDOL-dependent changes in ApoER2 abundance modulate dendritic filopodia initiation and synapse maturation. Loss of IDOL in neurons results in constitutive overexpression of ApoER2 and is associated with impaired activity-dependent structural remodeling of spines and defective LTP in primary neuron cultures and hippocampal slices. IDOL-deficient mice show profound impairment in experience-dependent reorganization of synaptic circuits in the barrel cortex, as well as diminished spatial and associative learning. These results identify control of lipoprotein receptor abundance by IDOL as a post-transcriptional mechanism underlying the structural and functional plasticity of synapses and neural circuits.


Assuntos
Proteínas Relacionadas a Receptor de LDL/metabolismo , Aprendizagem , Plasticidade Neuronal/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Escala de Avaliação Comportamental , Condicionamento Clássico , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA