Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177476

RESUMO

Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling. In turn, this induces epithelial-mesenchymal transition (EMT), activates tumor cell movements through exaggerated mitochondrial dynamics, and promotes metastatic dissemination in vivo. In a small-molecule drug screen, compensatory activation of stress response (GCN2) and survival (Akt) signaling maintains the viability of Mic60-low tumors and provides a selective therapeutic vulnerability. These data demonstrate that acutely damaged, "ghost" mitochondria drive tumor progression and expose an actionable therapeutic target in metastasis-prone cancers.


Assuntos
Mitocôndrias/fisiologia , Metástase Neoplásica/fisiopatologia , Neoplasias/genética , Morte Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Invasividade Neoplásica/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Processos Neoplásicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
2.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672324

RESUMO

Chaperone-mediated autophagy (CMA) is a catabolic pathway fundamental for cell homeostasis, by which specific damaged or non-essential proteins are degraded. CMA activity has three main levels of regulation. The first regulatory level is based on the targetability of specific proteins possessing a KFERQ-like domain, which can be recognized by specific chaperones and delivered to the lysosomes. Target protein unfolding and translocation into the lysosomal lumen constitutes the second level of CMA regulation and is based on the modulation of Lamp2A multimerization. Finally, the activity of some accessory proteins represents the third regulatory level of CMA activity. CMA's role in oncology has not been fully clarified covering both pro-survival and pro-death roles in different contexts. Taking all this into account, it is possible to comprehend the actual complexity of both CMA regulation and the cellular consequences of its activity allowing it to be elected as a modulatory and not only catabolic machinery. In this review, the role covered by CMA in oncology is discussed with a focus on its relevance in glioma. Molecular correlates of CMA importance in glioma responsiveness to treatment are described to identify new early efficacy biomarkers and new therapeutic targets to overcome resistance.


Assuntos
Autofagia Mediada por Chaperonas , Glioma/tratamento farmacológico , Glioma/patologia , Antineoplásicos Alquilantes/farmacologia , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Autofagia Mediada por Chaperonas/fisiologia , Glioma/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas/metabolismo , Temozolomida/farmacologia
3.
Breast Cancer Res Treat ; 161(3): 605-616, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28000015

RESUMO

PURPOSE: We demonstrated that Hsa-miR-567 expression is significantly downregulated in poor prognosis breast cancer, compared to better prognosis breast cancer, having a role in the control of cell proliferation and migration by regulating KPNA4 gene. METHODS AND RESULTS: In this study, based on our previously published in silico results, we proved both in vitro (cell line studies) and ex vivo (clinical studies), that Hsa-miR-567 expression is significantly downregulated in breast cancer with poor prognosis when compared to breast cancer with better prognosis. More intriguingly, we demonstrated that the ectopic expression of Hsa-miR-567 in poor prognosis breast cancer cell line strongly inhibits in vitro cell proliferation and migration. Furthermore, we showed in vivo that breast cancer cells, stably expressing Hsa-miR-567, xenografted in mouse, reduce tumor growth ability. Consistently, we found that karyopherin 4 (KPNA4), predicted target gene of Hsa-miR-567 as identified by our in silico analysis, is upregulated in highly aggressive MDA-MB-231 breast cancer cell line and patient tissues with poor prognosis with respect to good prognosis. CONCLUSIONS: Our results suggest a potential role of Hsa-miR-567 as a novel prognostic biomarker for BC and as regulator of KPNA4.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , MicroRNAs/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional/métodos , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Interferência de RNA , Reprodutibilidade dos Testes , Carga Tumoral , alfa Carioferinas/genética
4.
Mol Imaging ; 142015.
Artigo em Inglês | MEDLINE | ID: mdl-26044881

RESUMO

The main scientific issue hindering the development of tissue engineering technologies is the lack of proper vascularization. Among the various approaches developed for boosting vascularization, scaffold design has attracted increasing interest over the last few years. The aim of this article is to illustrate a scaffold design strategy for enhancing vascularization based on sacrificial microfabrication of embedded microchannels. This approach was combined with an innovative poly(ether urethane urea) (PEUtU) porous scaffold to provide an alternative graft substitute material for the treatment of tissue defects. Fluorescent and chemiluminescent imaging combined with computed tomography were used to study the behavior of the scaffold composition within living subjects by analyzing angiogenesis and inflammation processes and observing the variation in x-ray absorption, respectively. For this purpose, an IntegriSense 680 probe was used in vivo for the localization and quantification of integrin αvß3, due to its critical involvement in angiogenesis, and a XenoLight RediJect Inflammation Probe for the study of the decline in inflammation progression during healing. Overall, the collected data suggest the advantages of embedding a synthetic vascular network into a PEUtU porous matrix to enhance in vivo tissue integration, maturation, and regeneration. Moreover, our imaging approach proved to be an efficient and versatile tool for scaffold in vivo testing.


Assuntos
Diagnóstico por Imagem/métodos , Neovascularização Fisiológica , Alicerces Teciduais/química , Animais , Feminino , Inflamação/patologia , Fenômenos Mecânicos , Camundongos , Porosidade , Tomografia Computadorizada por Raios X
5.
Arch Ital Biol ; 151(3): 114-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24599629

RESUMO

We set out to assess the feasibility of exploiting expression of the mCherry gene, after lentiviral infection, in order visualise bone marrow-derived human mesenchymal stem cells (hMSCs) by optical imaging, and to provide proof of principle of this approach as a method for cell tracking and quantification in pre-clinical models. Commercial hMSCs were infected with a lentiviral vector carrying the mCherry gene under the control of the phosphoglycerate kinase promoter. After extensive in vitro culture, infected hMSCs were analysed for viability, morphology, differentiation capability, and maintenance of fluorescence. Thereafter, mCherry-positive cells were transplanted into unilaterally 6-hydroxy-dopamine lesioned rats (an experimental model of Parkinson's disease). Our analysis showed that hMSCs can be efficiently transduced with the lentiviral vector, retaining their biological features even in the long term. Intrastriatally transplanted mCherry-positive hMSCs can be detected ex vivo by a sensitive cooled CCD camera, both in the whole brain and in serial slices, and relatively quantified. Our protocol was found to be a reliable means of studying the viability of implanted hMSCs. mCherry labelling appears to be readily applicable in the post-transplantation tracking of stem cells and could favour the rapid development of new therapeutic targets for clinical treatments.


Assuntos
Citometria de Fluxo , Transplante de Células-Tronco Mesenquimais/métodos , Doenças Neurodegenerativas/cirurgia , Optogenética , Adrenérgicos/toxicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Lentivirus/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Doenças Neurodegenerativas/induzido quimicamente , Oxidopamina/toxicidade , Ratos , Ratos Sprague-Dawley , Antígenos Thy-1/metabolismo , Fatores de Tempo , Transfecção , Proteína Vermelha Fluorescente
6.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884545

RESUMO

Anti-1-amino-3-18fluorine-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed to compare 18F-fluciclovine PET, DCE-MRI and Gd-T1 in patients undergoing chemoradiotherapy for glioblastoma (GBM), and in a parallel pre-clinical GBM model, to investigate correlation between 18F-fluciclovine uptake, MRI findings, and tumour biology. 18F-fluciclovine-PET-computed tomography (PET-CT) and MRI including DCE-MRI were acquired before, during and after adjuvant chemoradiotherapy (60 Gy in 30 fractions with temozolomide) in GBM patients. MRI volumes were manually contoured; PET volumes were defined using semi-automatic thresholding. The similarity of the PET and DCE-MRI volumes outside the Gd-T1 volume boundary was measured using the Dice similarity coefficient (DSC). CT-2A tumour-bearing mice underwent MRI and 18F-fluciclovine PET-CT. Post-mortem mice brains underwent immunohistochemistry staining for ASCT2 (amino acid transporter), nestin (stemness) and Ki-67 (proliferation) to assess for biologically active tumour. 6 patients were recruited (GBM 1-6) and grouped according to overall survival (OS)-short survival (GBM-SS, median OS 249 days) and long survival (GBM-LS, median 903 days). For GBM-SS, PET tumour volumes were greater than DCE-MRI, in turn greater than Gd-T1. For GBM-LS, Gd-T1 and DCE-MRI were greater than PET. Tumour-specific 18F-fluciclovine uptake on pre-clinical PET-CT corresponded to immunostaining for Ki-67, nestin and ASCT2. Results suggest volumes of 18F-fluciclovine-PET activity beyond that depicted by DCE-MRI and Gd-T1 are associated with poorer prognosis in patients undergoing chemoradiotherapy for GBM. The pre-clinical model confirmed 18F-fluciclovine uptake reflected biologically active tumour.

7.
Eur J Nucl Med Mol Imaging ; 38(5): 949-68, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21170525

RESUMO

Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.


Assuntos
Sistema Imunitário/citologia , Imagem Molecular/métodos , Neoplasias/imunologia , Animais , Transporte Biológico , Humanos , Sistema Imunitário/metabolismo , Sondas Moleculares/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Coloração e Rotulagem
8.
Sci Rep ; 11(1): 6553, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753785

RESUMO

Triple negative breast cancer (TNBC) accounts for about a fifth of all breast cancers and includes a diverse group of cancers. The heterogeneity of TNBC and the lack of target receptors on the cell surface make it difficult to develop specific therapeutic treatments. These aspects cause the high negative prognosis of patients with this type of tumor. The analysis of the molecular profiles of TNBC samples has allowed a better characterization of this tumor, supporting the search for new reliable diagnostic markers. To this end, we have developed a bioinformatic approach to integrate networks of genes differentially expressed in basal breast cancer compared to healthy tissues, with miRNAs able to regulate their expression. We studied the role of these miRNAs in TNBC subtype cell lines. We therefore identified two miRNAs, namely miR-135b and miR-365, with a central role in regulating the altered functional pathways in basal breast cancer. These two miRNAs are differentially expressed in human TNBC immunohistochemistry-selected tissues, and their modulation has been shown to play a role in the proliferation of tumor control and its migratory and invasive capacity in TNBC subtype cell lines. From the perspective of personalized medicine, we managed to modulate the expression of the two miRNAs in organotypic cultures, suggesting their possible use as diagnostic and therapeutic molecules. miR-135b and miR-365 have a key role in TNBC, controlling proliferation and invasion. Their detection could be helpful in TNBC diagnosis, while their modulation could become a new therapeutic tool for TNBC.


Assuntos
Biomarcadores Tumorais , MicroRNAs/genética , Fenótipo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo , Terapia de Alvo Molecular , Medicina de Precisão , Neoplasias de Mama Triplo Negativas/terapia
9.
Nutrients ; 13(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920886

RESUMO

Maternal obesity and gestational diabetes mellitus (GDM) are increasing worldwide, representing risk factors for both mother and child short/long-term outcomes. Oxidative stress, lipotoxicity and altered autophagy have already been reported in obesity, but few studies have focused on obese pregnant women with GDM. Antioxidant and macro/chaperone-mediated autophagy (CMA)-related gene expressions were evaluated herein in obese and GDM placentas. A total of 47 women with singleton pregnancies delivered by elective cesarean section were enrolled: 16 normal weight (NW), 18 obese with no comorbidities (OB GDM(-)), 13 obese with GDM (OB GDM(+)). Placental gene expression was assessed by real-time PCR. Antioxidant gene expression (CAT, GPX1, GSS) decreased, the pro-autophagic ULK1 gene increased and the chaperone-mediated autophagy regulator PHLPP1 decreased in OB GDM(-) vs. NW. On the other hand, PHLPP1 expression increased in OB GDM(+) vs. OB GDM(-). When analyzing results in relation to fetal sex, we found sexual dimorphism for both antioxidant and CMA-related gene expressions. These preliminary results can pave the way for further analyses aimed at elucidating the placental autophagy role in metabolic pregnancy disorders and its potential targetability for the treatment of diabetes outcomes.


Assuntos
Antioxidantes/metabolismo , Autofagia/genética , Diabetes Gestacional/genética , Obesidade Materna/genética , Placenta/metabolismo , Adulto , Cesárea , Feminino , Humanos , Estresse Oxidativo/genética , Gravidez
10.
Front Oncol ; 11: 664149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012924

RESUMO

Glioblastoma (GBM) is a highly aggressive tumor of the brain. Despite the efforts, response to current therapies is poor and 2-years survival rate ranging from 6-12%. Here, we evaluated the preclinical efficacy of Metformin (MET) as add-on therapy to Temozolomide (TMZ) and the ability of [18F]FLT (activity of thymidine kinase 1 related to cell proliferation) and [18F]VC701 (translocator protein, TSPO) Positron Emission Tomography (PET) radiotracers to predict tumor response to therapy. Indeed, TSPO is expressed on the outer mitochondrial membrane of activated microglia/macrophages, tumor cells, astrocytes and endothelial cells. TMZ-sensitive (Gli36ΔEGFR-1 and L0627) or -resistant (Gli36ΔEGFR-2) GBM cell lines representative of classical molecular subtype were tested in vitro and in vivo in orthotopic mouse models. Our results indicate that in vitro, MET increased the efficacy of TMZ on TMZ-sensitive and on TMZ-resistant cells by deregulating the balance between pro-survival (bcl2) and pro-apoptotic (bax/bad) Bcl-family members and promoting early apoptosis in both Gli36ΔEGFR-1 and Gli36ΔEGFR-2 cells. In vivo, MET add-on significantly extended the median survival of tumor-bearing mice compared to TMZ-treated ones and reduced the rate of recurrence in the TMZ-sensitive models. PET studies with the cell proliferation radiopharmaceutical [18F]FLT performed at early time during treatment were able to distinguish responder from non-responder to TMZ but not to predict the duration of the effect. On the contrary, [18F]VC701 uptake was reduced only in mice treated with MET plus TMZ and levels of uptake negatively correlated with animals' survival. Overall, our data showed that MET addition improved TMZ efficacy in GBM preclinical models representative of classical molecular subtype increasing survival time and reducing tumor relapsing rate. Finally, results from PET imaging suggest that the reduction of cell proliferation represents a common mechanism of TMZ and combined treatment, whereas only the last was able to reduce TSPO. This reduction was associated with the duration of treatment response. TSPO-ligand may be used as a complementary molecular imaging marker to predict tumor microenvironment related treatment effects.

11.
Theranostics ; 10(1): 50-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903105

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed/amplified in one third of breast cancers (BCs), and is associated with the poorer prognosis and the higher metastatic potential in BC. Emerging evidences highlight the role of microRNAs (miRNAs) in the regulation of several cellular processes, including BC. METHODS: Here we identified, by in silico approach, a group of three miRNAs with central biological role (high degree centrality) in HER2+ BC. We validated their dysregulation in HER2+ BC and we analysed their functional role by in vitro approaches on selected cell lines and by in vivo experiments in an animal model. RESULTS: We found that their expression is dysregulated in both HER2+ BC cell lines and human samples. Focusing our study on the only upregulated miRNA, miR-429, we discovered that it acts as an oncogene and its upregulation is required for HER2+ cell proliferation. It controls the metastatic potential of HER2+ BC subtype by regulating migration and invasion of the cell. CONCLUSIONS: In HER2+ BC oncogenic miR-429 is able to regulate HIF1α pathway by directly targeting VHL mRNA, a molecule important for the degradation of HIF1α. The overexpression of miR-429, observed in HER2+ BC, causes increased proliferation and migration of the BC cells. More important, silencing miR-429 succeeds in delaying tumor growth, thus miR-429 could be proposed as a therapeutic probe in HER2+ BC tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Receptor ErbB-2/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Nanomedicina Teranóstica
12.
Front Oncol ; 9: 463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214505

RESUMO

Hypoxia is a key driver of tumor adaptation promoting tumor progression and resistance to therapy. Hypoxia related pathways might represent attractive targets for the treatment of Glioblastoma Multiforme (GBM), that up to date is characterized by a poor prognosis. Primary aim of this study was to investigate the role of hypoxia and hypoxia-related modifications in the effect of temozolomide (TMZ) given alone or in association with the antidiabetic agent Metformin (MET) or the PI3K/mTOR blocker, BEZ235. The study was conducted in the TMZ responsive U251 and resistant T98 GBM cells. Our results showed that during hypoxia, TMZ plus MET reduced viability of U251 cells affecting also CD133 and CD90 expressing cells. This effect was associated with a reduction of HIF-1α activity, VEGF release and AKT activation. In T98 TMZ-resistant cells, TMZ plus MET exerted similar effects on HIF-1α. However, in this cell line, TMZ plus MET failed to reduce CD133 positive cells and AKT phosphorylation. Nevertheless, the administration of the dual PI3K/mTOR inhibitor BEZ235 potentiated the effect of TMZ plus MET on cell viability, inducing a pro-apoptotic phenotype during hypoxic condition also in T98 cells, suggesting the block of the PI3K/AKT/mTOR pathway as a complementary target to further overcome GBM resistance during hypoxia. In conclusion, we proposed TMZ plus MET as suitable treatment to revert TMZ-resistance also during hypoxia, an effect potentiated by the inhibition of PI3K/mTOR axis.

13.
Cells ; 8(11)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653091

RESUMO

Glioblastoma (GBM) is the most common astrocytic-derived brain tumor in adults, characterized by a poor prognosis mainly due to the resistance to the available therapy. The study of mitochondria-derived oxidative stress, and of the biological events that orbit around it, might help in the comprehension of the molecular mechanisms at the base of GBM responsiveness to Temozolomide (TMZ). Sensitive and resistant GBM cells were used to test the role of mitochondrial ROS release in TMZ-resistance. Chaperone-Mediated Autophagy (CMA) activation in relation to reactive oxygen species (ROS) release has been measured by monitoring the expression of specific genes. Treatments with H2O2 were used to test their potential in reverting resistance. Fluctuations of cytoplasmic ROS levels were accountable for CMA induction and cytotoxic effects observed in TMZ sensitive cells after treatment. On the other hand, in resistant cells, TMZ failed in producing an increase in cytoplasmic ROS levels and CMA activation, preventing GBM cell toxicity. By increasing oxidative stress, CMA activation was recovered, as also cell cytotoxicity, especially in combination with TMZ treatment. Herein, for the first time, it is shown the relation between mitochondrial ROS release, CMA activation and TMZ-responsiveness in GBM.


Assuntos
Autofagia Mediada por Chaperonas/fisiologia , Glioblastoma/metabolismo , Estresse Oxidativo/fisiologia , Apoptose , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Citoplasma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Humanos , Peróxido de Hidrogênio , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Temozolomida/metabolismo , Temozolomida/farmacologia
14.
EBioMedicine ; 41: 225-235, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30737083

RESUMO

BACKGROUND: The V-ATPase proton pump controls acidification of intra and extra-cellular milieu in both physiological and pathological conditions. We previously showed that some V-ATPase subunits are enriched in glioma stem cells and in patients with poor survival. In this study, we investigated how expression of a GBM-like V-ATPase pump influences the non-neoplastic brain microenvironment. METHODS: Large oncosome (LO) vesicles were isolated from primary glioblastoma (GBM) neurospheres, or from patient sera, and co-cultured with primary neoplastic or non-neoplastic brain cells. LO transcript and protein contents were analyzed by qPCR, immunoblotting and immunogold staining. Activation of pathways in recipient cells was determined at gene and protein expression levels. V-ATPase activity was impaired by Bafilomycin A1 or gene silencing. FINDINGS: GBM neurospheres influence their non-neoplastic microenvironment by delivering the V-ATPase subunit V1G1 and the homeobox genes HOXA7, HOXA10, and POU3F2 to recipient cells via LO. LOs reprogram recipient cells to proliferate, grow as spheres and to migrate. Moreover, LOs are particularly abundant in the circulation of GBM patients with short survival time. Finally, impairment of V-ATPase reduces LOs activity. INTERPRETATION: We identified a novel mechanism adopted by glioma stem cells to promote disease progression via LO-mediated reprogramming of their microenvironment. Our data provide preliminary evidence for future development of LO-based liquid biopsies and suggest a novel potential strategy to contrast glioma progression. FUND: This work was supported by Fondazione Cariplo (2014-1148 to VV) and by the Italian Minister of Health-Ricerca Corrente program 2017 (to SF).


Assuntos
Comunicação Autócrina , Neoplasias Encefálicas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Glioblastoma/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Glioblastoma/patologia , Proteínas Homeobox A10 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Fatores do Domínio POU/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Microambiente Tumoral , ATPases Vacuolares Próton-Translocadoras/genética
15.
EBioMedicine ; 41: 214-224, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30737087

RESUMO

BACKGROUND: Cancer cells use specific V-ATPase subunits to activate oncogenic pathways. Therefore, we investigated V-ATPase deregulation in aggressive gliomas and associated signaling. METHODS: V-ATPase genes expression and associated pathways were analyzed in different series of glioma available from public databases, as well as in patients' cohort. Activation of pathways was analyzed at gene and protein expression levels. A genetic model of glioma in Drosophila melanogaster and mice with GBM patients-derived orthotopic xenografts were used as in vivo models of disease. FINDINGS: GBM and recurrent gliomas display a specific V-ATPase signature. Such signature resolves the heterogeneous class of IDH-wild type lower-grade gliomas, identifying the patients with worse prognosis independently from clinical and molecular features (p = 0·03, by Cox proportional-hazards model). In vivo, V-ATPase subunits deregulation significantly impacts tumor growth and proliferation. At the molecular level, GBM-like V-ATPase expression correlates with upregulation of Homeobox genes. INTERPRETATION: Our data identify a V-ATPase signature that accompanies glioma aggressiveness and suggest new entry points for glioma stratification and follow-up. FUND: This work was supported by Fondazione Cariplo (2014-1148 to VV), Fondazione IRCCS Ca' Granda, and Fondazione INGM Grant in Molecular Medicine 2014 (to VV).


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Células Cultivadas , Drosophila melanogaster , Feminino , Glioma/classificação , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Endocrinol ; 21(2): 388-400, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17158222

RESUMO

There is a growing interest in peroxisome proliferator-activated receptors (PPARs) as major players in the regulation of lipid and carbohydrate metabolism. Drugs targeting PPARs were in fact shown to have major relevance for the treatment of diseases associated with aging, such as arteriosclerosis and diabetes. However, a variety of toxic effects associated with PPAR ligand administration has been documented, including hepatocarcinogenesis, which may severely limit its therapeutic use. A better comprehension of the multiplicity of PPAR physiological functions is therefore mandatory for the development of novel, safer drugs. We here describe the generation of a novel transgenic mouse for the detection of the generalized activities of PPARs, the PPAR responsive element-Luc reporter mouse. In this model luciferase expression is under the control of a PPAR-inducible promoter in all target organs. By optical imaging and ex vivo analysis, we were able to demonstrate the remarkable gender specificity of the PPAR transcriptional activity in liver. In fact, in the liver of female PPAR responsive element-Luc, the PPAR reporter transgene is more than one order of magnitude less expressed, thus leading to the conclusion that the signaling in females is much less activated than in males. Diet or hormonal manipulations as demonstrated here by treatments with high-fat diet or gonad removal and hormone replacement do not influence this low activation. The extent of the gender difference in PPAR transcriptional activity and the ineffectiveness of hormone treatments or diet to significantly elevate liver PPAR activity in females led us to hypothesize that gender-specific epigenetic events occurring during development may affect PPAR signaling in the liver. This study sets the ground for understanding the differential susceptibility of the two genders to metabolic disorders; furthermore, the model generated provides a novel opportunity for the molecular characterization of PPAR activity in pathophysiological conditions.


Assuntos
Fígado/metabolismo , Luciferases/genética , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Elementos de Resposta , Animais , Gorduras na Dieta/administração & dosagem , Feminino , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/biossíntese , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Ovariectomia , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas , Fatores Sexuais , Transdução de Sinais , Testosterona/farmacologia
17.
J Endocrinol ; 238(3): 165-176, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30012715

RESUMO

Oestrogens are well-known proliferation and differentiation factors that play an essential role in the correct development of sex-related organs and behaviour in mammals. With the use of the ERE-Luc reporter mouse model, we show herein that throughout mouse development, oestrogen receptors (ERs) are active starting from day 12 post conception. Most interestingly, we show that prenatal luciferase expression in each organ is proportionally different in relation to the germ layer of the origin. The luciferase content is highest in ectoderm-derived organs (such as brain and skin) and is lowest in endoderm-derived organs (such as liver, lung, thymus and intestine). Consistent with the testosterone surge occurring in male mice at the end of pregnancy, in the first 2 days after birth, we observed a significant increase in the luciferase content in several organs, including the liver, bone, gonads and hindbrain. The results of the present study show a widespread transcriptional activity of ERs in developing embryos, pointing to the potential contribution of these receptors in the development of non-reproductive as well as reproductive organs. Consequently, the findings reported here might be relevant in explaining the significant differences in male and female physiopathology reported by a growing number of studies and may underline the necessity for more systematic analyses aimed at the identification of the prenatal effects of drugs interfering with ER signalling, such as aromatase inhibitors or endocrine disrupter chemicals.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Estrogênio/fisiologia , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Fulvestranto/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
18.
Front Oncol ; 8: 249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013951

RESUMO

RATIONALE: The activity of the transcription factor, hypoxia-inducible factor (HIF)-1α, is a common driver of a number of the pathways involved in the aggressiveness of glioblastomas (GBMs), and it has been suggested that the reduction in this activity observed, soon after the administration of temozolomide (TMZ), can be a biomarker of an early response in GBM models. As HIF-1α is a tightly regulated protein, studying the processes involved in its downregulation could shed new light on the mechanisms underlying GBM sensitivity or resistance to TMZ. METHODS: The effect of HIF-1α silencing on cell responsiveness to TMZ was assessed in four genetically different human GBM cell lines by evaluating cell viability and apoptosis-related gene balance. LAMP-2A silencing was used to evaluate the contribution of chaperone-mediated autophagy (CMA) to the modulation of HIF-1α activity in TMZ-sensitive and TMZ-resistant cells. RESULTS: The results showed that HIF-1α but not HIF-2α activity is associated with GBM responsiveness to TMZ: its downregulation improves the response of TMZ-resistant cells, while blocking CMA-mediated HIF-1α degradation induces resistance to TMZ in TMZ-sensitive cells. These findings are in line with the modulation of crucial apoptosis-related genes. CONCLUSION: Our results demonstrate the central role played by HIF-1α activity in determining the sensitivity or resistance of GBMs to TMZ, and we suggest that CMA is the cellular mechanism responsible for modulating this activity after TMZ treatment.

20.
Cell Metab ; 28(2): 256-267.e5, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29909969

RESUMO

Sex impacts on liver physiology with severe consequences for energy metabolism and response to xenobiotic, hepatic, and extra-hepatic diseases. The comprehension of the biology subtending sex-related hepatic differences is therefore very relevant in the medical, pharmacological, and dietary perspective. The extensive application of metabolomics paired to transcriptomics here shows that, in the case of short-term fasting, the decision to maintain lipid synthesis using amino acids (aa) as a source of fuel is the key discriminant for the hepatic metabolism of male and female mice. Pharmacological and genetic interventions indicate that the hepatic estrogen receptor (ERα) has a key role in this sex-related strategy that is primed around birth by the aromatase-dependent conversion of testosterone into estradiol. This energy partition strategy, possibly the result of an evolutionary pressure enabling mammals to tailor their reproductive capacities to nutritional status, is most important to direct future sex-specific dietary and medical interventions.


Assuntos
Aminoácidos/metabolismo , Receptor alfa de Estrogênio/fisiologia , Jejum/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Caracteres Sexuais , Animais , Aromatase/metabolismo , Metabolismo Energético , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA