RESUMO
Abnormal activation of Hedgehog (Hh) signaling pathway mediates the genesis and progression of various tumors [1]. Currently, three drugs targeting the Hh signaling component Smoothened (Smo) have been marketed for the clinical treatment of basal cell tumors or acute myeloid leukemia. However, drug resistance is a common problem in those drugs, so the study of Smo inhibitors that can overcome drug resistance has important guiding significance for clinical adjuvant drugs. MTT assay, clone formation assay and EdU assay were used to detect the proliferation inhibitory activity of the drugs on tumor cells. The effect of B13 on cell cycle and apoptosis were detected by flow cytometry. An acute toxicity test was used to detect the toxicity of B13 in vivo, and xenograft tumor model was used to detect the efficacy of B13 in vivo. The binding of B13 to Smo was studied by BODIPY-cyclopamine competitive binding assay and molecular docking. The effect of B13 on the expression and localization of downstream target gene Gli1/2 of Smo was investigated by Western Blot and immunofluorescence assay. SmoD473H mutant cell line was constructed to study the effect of B13 against drug resistance. (1) B13 had the strongest inhibitory activity against colorectal cancer cells. (2) B13 can effectively inhibit the clone formation and EdU positive rate of colon cancer cells. (3) B13 can block the cell cycle in the G2/M phase and cell apoptosis. (4) B13 has low toxicity in vivo, and its efficacy in vivo is better than that of the Vismodegib. (5) Molecular docking and BODIPY-cyclopamine experiments showed that B13 could bind to Smo protein. (6) B13 can inhibit the protein expression of Gli1, the downstream of Smo, and inhibit its entry into the nucleus. (7) B13 could inhibit the expression of Gli1 in the HEK293 cells with SmoD473H, and the molecular docking results showed that B13 could bind SmoD473H protein. B13 with the best anti-tumor activity was screened out by MTT assay. In vitro, pharmacodynamics experiments showed that B13 could effectively inhibit the proliferation and metastasis of colorectal cancer cells, induce cell cycle arrest, and induce cell apoptosis. In vivo pharmacodynamics experiments showed that B13 was superior to Vismodegib in antitumor activity and had low toxicity in vivo. Mechanism studies have shown that B13 can bind Smo protein, inhibit the expression of downstream Gli1 and its entry into the nucleus. Notably, B13 overcomes resistance caused by SmoD473H mutations.
Assuntos
Neoplasias Colorretais , Proteínas Hedgehog , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Células HEK293 , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Proliferação de CélulasRESUMO
BACKGROUND AND AIMS: Mesenchymal stem cell (MSC) therapy is a promising strategy for treating osteoarthritis (OA). However, the inflammatory microenvironment, apoptosis of transplanted cells, and shear forces during direct injection limit the therapeutic efficacy. This study aimed to explore the role of rapamycin combined with human umbilical-cord-derived mesenchymal stem cells (hUMSCs) in OA rabbits in vivo. METHODS: OA rabbits received an intra-articular injection of a collagenase solution. Gross observations, X-ray examinations, and histological examinations were performed to detect cartilage degradation levels. The fluorescent membrane dye DiR was used to label hUMSCs. In the combination therapy group, rapamycin was injected into the rabbit knee joint one day post the intra-articular injection of hUMSCs. Bioinformatics and transcriptome profiling of the knee meniscus were used to evaluate the potential molecular mechanisms of the combination therapy. RESULTS: Our study shows that rapamycin combined with hUMSCs significantly ameliorated OA severity in vivo, enhancing matrix synthesis and promoting cartilage repair. The combination therapy was more efficient than rapamycin or hUMSC treatment alone. Moreover, bioinformatics and transcriptomic analyses revealed that combination therapy might enhance autophagy in chondrocytes, partially by inhibiting the mTOR pathway. CONCLUSIONS: Our study indicates that the combination therapy of rapamycin and hUMSCs may promote cartilage repair in OA rabbits through the mTOR pathway and offers a novel approach for OA therapy. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Our study provides new evidence to support the use of hUMSCs in combination with rapamycin as a potential candidate for OA treatment.
Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Animais , Humanos , Coelhos , Sirolimo/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cartilagem Articular/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismoRESUMO
Background: Patients with prostate cancer often develop resistance to androgen deprivation therapy, a condition called castration-resistant prostate cancer (CRPC). Enzalutamide (MDV3100) can prolong the survival of patients with CRPC after chemotherapy, but â¼50% of patients eventually relapse and develop resistance to MDV3100. Thus, it is necessary to explore new treatment methods to improve the therapeutic effect of MDV3100. Tyrosine kinases play an essential role in the pathogenesis of CRPC. Methods: MTT assay was used to detect the inhibitory effects of MDV3100 and tyrosine kinase inhibitor on prostate cancer cells. CompuSyn version 1.0 was used to calculate the combination index (CI) values using the Chou-Talalay method. Clone formation and EdU assay were used to detect the effect of afatinib combined with MDV3100 on the proliferation of 22Rv1 cells. RT-qPCR and Western blot were used to explore the mechanism of drug combination. The aim of the present study was to determine the effects of several tyrosine kinase inhibitors (TKIs) when used in combination with MDV3100 in vitro. Results: The results demonstrated that TKIs combined with MDV3100 exerted a synergistic effect on a variety of PCa cells. Afatinib combined with MDV3100 could suppress the proliferation and migration of 22RV1 cells, as well as cause their cell cycle arrest and apoptosis. Mechanistically, afatinib effectively reduced the protein expression levels of HER2 and HER3 and inhibited EGFR phosphorylation, thereby enhancing the effect of MDV3100 and suppressing CRPC. Conclusions: These findings suggested that afatinib treatment improved the effect of MDV3100 on 22RV1 cells, highlighting this drug as a potential therapeutic strategy for patients with CRPC.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Afatinib/farmacologia , Afatinib/uso terapêutico , Antagonistas de Androgênios , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Recidiva Local de Neoplasia , Nitrilas/farmacologia , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêuticoRESUMO
There are few effective treatment options for diffuse pulmonary hemorrhage (DPH). We aimed to elucidate the therapeutic role and underlying mechanisms of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) in DPH. Therapeutic effects of MSCs/MSC-EVs in pristane-induced DPH mice were evaluated via pulmonary function testing and histopathology. Transcriptome sequencing analyzed differentially expressed genes in control, DPH, and MSC groups. The proportion of macrophage polarization was evaluated in vivo and in vitro via fluorescence-activated cell sorting in control, DPH, MSC, MSC-EV inhalation, and MSC-EV intravenous groups. Intraperitoneal injection of pristane induced diffuse alveolar hemorrhage, early fibrosis, and inflammation in C57BL/6 mice. Monocytes were depleted in the peripheral blood in DPH mice and MSCs were recruited to the lungs, resulting in significantly attenuated diffuse alveolar hemorrhage and suppressed immunological response. This was more effective in the hyperacute hemorrhage phase than the early inflammatory phase. An MSC treatment-mediated anti-inflammatory effect was observed in DPH mice. Furthermore, MSC-EVs inhalation or tail-vein injection could effectively reduce DPH injury. MSCs could suppress macrophage M1 polarization in DPH in vivo and in vitro. MSCs displayed significant therapeutic effects in pristane-induced DPH, which may be a promising cell-free therapeutic approach.
Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Terpenos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Pulmão/patologia , Hemorragia/terapia , Hemorragia/patologia , Anti-Inflamatórios , Células-Tronco Mesenquimais/fisiologia , Modelos Animais de DoençasRESUMO
BACKGROUND AND OBJECTIVES: Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS: Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 â 100.0, 248.1 â 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS: The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS: TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.