RESUMO
By using canonical correspondence analysis (CCA), this paper studied the effects of small-scale topographic changes on the distribution patterns of ground plants with different growth forms in the montane evergreen broad-leaved forest in Chebaling National Nature Reserve of North Guangdong, China. It was observed that slope aspect, slope grade, and slope position had significantly integrative effects on the distribution patterns of four growth form ground plants (fern, liana, herb, and shrub). Slope aspect had significant effects on the distribution patterns of all four ground plants but slope position didn't have, whereas slope grade only affected the distribution pattern of shrub significantly. From shady slope to semi-shady slope, and to semi-sunny slope, the abundance of the four growth form ground plants decreased gradually, indicating that shade plants were dominant in the ground vegetation of subtropical montane evergreen broad-leaved forest. Most shrubs were shade-tolerant species, and their change patterns of richness and diversity with slope aspect were the same as the change pattern of abundance. Shrubs were sensitive to the change of slope grade, and richer on gentle slopes. In hilly and low mountains, slope position changed little, and had less effects on the distribution patterns of ground plants. At stand-level, horizontal topographic factor (slope grade aspect) had much greater effects on the distribution patterns of ground plants, as compared with vertical topographic factors (slope grade and slope position), which suggested that slope aspect was the major factor affecting the water and heat conditions in subtropical montane forest.