RESUMO
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Assuntos
Edição de Genes , Neoplasias , Reprogramação Celular , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Microambiente Tumoral/genéticaAssuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Monofosfato de Adenosina/análogos & derivados , Adulto , Alanina/análogos & derivados , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Método Duplo-Cego , Humanos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19RESUMO
RNA chemical modifications are a new but rapidly developing field. They can directly affect RNA splicing, transport, stability, and translation. Consequently, they are involved in the occurrence and development of diseases that have been studied extensively in recent years. However, few studies have focused on the correlation between chemical modifications and drug effects. Here, we provide a landscape of six RNA modifications in pharmacogene RNA (pharmacoepitranscriptomics) to fully clarify the correlation between chemical modifications and drugs. We performed systematic and comprehensive analyses on pharmacoepitranscriptomics, including basic characteristics of RNA modification and modification-associated mutations and drugs affected by them. Our results show that chemical modifications are common in pharmacogenes, especially N6-methyladenosine (m6A) modification. In addition, we found a very close relationship between chemical modifications and anti-tumor drugs. More interestingly, the results demonstrate the importance of m6A modification for anti-tumor drugs, especially for drugs in triple-negative breast cancer (TNBC), ovarian cancer, and acute myelocytic leukemia (AML). These results indicate that pharmacoepitranscriptomics could be a new source of drug-effect biomarkers, especially for m6A and anti-tumor drugs.
RESUMO
AIMS: Coronavirus disease 2019 (COVID-19) is rapidly spreading worldwide. Drug therapy is one of the major treatments, but contradictory results of clinical trials have been reported among different individuals. Furthermore, comprehensive analysis of personalized pharmacotherapy is still lacking. In this study, analyses were performed on 47 well-characterized COVID-19 drugs used in the personalized treatment of COVID-19. METHODS: Clinical trials with published results of drugs use for COVID-19 treatment were collected to evaluate drug efficacy. Drug-to-Drug Interactions (DDIs) were summarized and classified. Functional variations in actionable pharmacogenes were collected and systematically analysed. "Gene Score" and "Drug Score" were defined and calculated to systematically analyse ethnicity-based genetic differences, which are important for the safer use of COVID-19 drugs. RESULTS: Our results indicated that four antiviral agents (ritonavir, darunavir, daclatasvir and sofosbuvir) and three immune regulators (budesonide, colchicine and prednisone) as well as heparin and enalapril could generate the highest number of DDIs with common concomitantly utilized drugs. Eight drugs (ritonavir, daclatasvir, sofosbuvir, ribavirin, interferon alpha-2b, chloroquine, hydroxychloroquine (HCQ) and ceftriaxone had actionable pharmacogenomics (PGx) biomarkers among all ethnic groups. Fourteen drugs (ritonavir, daclatasvir, prednisone, dexamethasone, ribavirin, HCQ, ceftriaxone, zinc, interferon beta-1a, remdesivir, levofloxacin, lopinavir, human immunoglobulin G and losartan) showed significantly different pharmacogenomic characteristics in relation to the ethnic origin of the patient. CONCLUSION: We recommend that particularly for patients with comorbidities to avoid serious DDIs, the predictive, preventive, and personalized medicine (PPPM, 3 PM) strategies have to be applied for COVID-19 treatment, and genetic tests should be performed for drugs with actionable pharmacogenes, especially in some ethnic groups with a higher frequency of functional variations, as our analysis showed. We also suggest that drugs associated with higher ethnic genetic differences should be given priority in future pharmacogenetic studies for COVID-19 management. To facilitate translation of our results into clinical practice, an approach conform with PPPM/3 PM principles was suggested. In summary, the proposed PPPM/3 PM attitude should be obligatory considered for the overall COVID-19 management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00247-0.