RESUMO
In this work, the first version of "Glycomapping" software is developed for the analysis of the most common low-molecular-weight heparin (LMWH), enoxaparin. Using ultrahigh-performance liquid chromatography-mass spectrometry, size exclusion chromatography is applied, and a virtual database of glycans in enoxaparin is established for the initial searching. With "Glycomapping", a complex chromatogram can be fitted, significantly improving resolution and confirming an accurate distribution range for each size of glycan within enoxaparin. In addition, randomly matched MS data can be corrected, with the constraint of the corresponding chromatographic retention time range, to remove most false positive data. The analytical stability of "Glycomapping" software was confirmed. Enoxaparin, prepared by different manufacturers and from different animal sources, was analyzed using "Glycomapping." Compared to raw data, data processed with "Glycomapping" are more robust and accurate. Another two LMWHs, nadroparin and dalteparin could also be analyzed with this software. This work lays a solid foundation for the automated analysis of heterogeneous mixtures of natural glycans, such as LMWHs and other complex oligosaccharides and polysaccharides.
Assuntos
Enoxaparina , Heparina de Baixo Peso Molecular , Animais , Anticoagulantes , Cromatografia Líquida , Dalteparina , Enoxaparina/química , Heparina/química , Heparina de Baixo Peso Molecular/análise , Nadroparina/química , SoftwareRESUMO
Epidermal growth factor receptor (EGFR) has a crucial role in cell differentiation and proliferation and cancer, and its expression appears to be up-regulated when arylsulfatase B (ARSB or GalNAc-4-sulfatase) is reduced. ARSB removes 4-sulfate groups from the nonreducing end of dermatan sulfate and chondroitin 4-sulfate (C4S), and its decreased expression has previously been reported to inhibit the activity of the ubiquitous protein-tyrosine phosphatase, nonreceptor type 11 (SHP2 or PTPN11). However, the mechanism by which decline in ARSB leads to decline in SHP2 activity is unclear. Here, we show that SHP2 binds preferentially C4S, rather than chondroitin 6-sulfate, and confirm that SHP2 activity declines when ARSB is silenced. The reduction in ARSB activity, and the resultant increase in C4S, increased the expression of EGFR (Her1/ErbB1) in human prostate stem and epithelial cells. The increased expression of EGFR occurred after 1) the decline in SHP2 activity, 2) enhanced c-Jun N-terminal kinase (JNK) activity, 3) increased nuclear DNA binding by c-Jun and c-Fos, and 4) EGFR promoter activation. In response to exogenous EGF, there was increased bromodeoxyuridine incorporation, consistent with enhanced cell proliferation. These findings indicated that ARSB and chondroitin 4-sulfation affect the activation of an important dual phosphorylation threonine-tyrosine kinase and the mRNA expression of a critical tyrosine kinase receptor in prostate cells. Restoration of ARSB activity with the associated reduction in C4S may provide a new therapeutic approach for managing malignancies in which EGFR-mediated tyrosine kinase signaling pathways are active.
Assuntos
Células Epiteliais/metabolismo , MAP Quinase Quinase 4/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Próstata/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Células-Tronco/metabolismo , Sulfatos de Condroitina/metabolismo , Células Epiteliais/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , MAP Quinase Quinase 4/genética , Masculino , N-Acetilgalactosamina-4-Sulfatase/genética , Fosforilação , Próstata/citologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Células-Tronco/citologiaRESUMO
Sepsis patients are at increased risk for hospital-acquired pulmonary infections, potentially due to postseptic immunosuppression known as the compensatory anti-inflammatory response syndrome (CARS). CARS has been attributed to leukocyte dysfunction, with an unclear role for endothelial cells. The pulmonary circulation is lined by an endothelial glycocalyx, a heparan sulfate-rich layer essential to pulmonary homeostasis. Heparan sulfate degradation occurs early in sepsis, leading to lung injury. Endothelial synthesis of new heparan sulfates subsequently allows for glycocalyx reconstitution and endothelial recovery. We hypothesized that remodeling of the reconstituted endothelial glycocalyx, mediated by alterations in the endothelial machinery responsible for heparan sulfate synthesis, contributes to CARS. Seventy-two hours after experimental sepsis, coincident with glycocalyx reconstitution, mice demonstrated impaired neutrophil and protein influx in response to intratracheal lipopolysaccharide (LPS). The postseptic reconstituted glycocalyx was structurally remodeled, with enrichment of heparan sulfate disaccharides sulfated at the 6-O position of glucosamine. Increased 6-O-sulfation coincided with loss of endothelial sulfatase-1 (Sulf-1), an enzyme that specifically removes 6-O-sulfates from heparan sulfate. Intravenous administration of Sulf-1 to postseptic mice restored the pulmonary response to LPS, suggesting that loss of Sulf-1 was necessary for postseptic suppression of pulmonary inflammation. Endothelial-specific knockout mice demonstrated that loss of Sulf-1 was not sufficient to induce immunosuppression in non-septic mice. Knockdown of Sulf-1 in human pulmonary microvascular endothelial cells resulted in downregulation of the adhesion molecule ICAM-1. Taken together, our study indicates that loss of endothelial Sulf-1 is necessary for postseptic suppression of pulmonary inflammation, representing a novel endothelial contributor to CARS.
Assuntos
Células Endoteliais/enzimologia , Pulmão/imunologia , Pneumonia/prevenção & controle , Sepse/complicações , Sulfotransferases/deficiência , Animais , Feminino , Glicocálix/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/etiologia , Pneumonia/metabolismo , Sepse/induzido quimicamente , Sepse/patologiaRESUMO
Glycosaminoglycans (GAGs) are biologically and pharmacologically important linear, anionic polysaccharides containing various repeating disaccharides sequences. The analysis of these polysaccharides generally relies on their chemical or enzymatic breakdown to disaccharide units that are separated, by chromatography or electrophoresis, and detected, by UV, fluorescence, or mass spectrometry (MS). Isoelectric focusing (IEF) is an important analytical technique with high resolving power for the separation of analytes exhibiting differences in isoelectric points. One format of IEF, the capillary isoelectric focusing (cIEF), is an attractive approach in that it can be coupled with mass spectrometry (cIEF-MS) to provide online focusing and detection of complex mixtures. In the past three decades, numerous studies have applied cIEF-MS methods to the analysis of protein and peptide mixtures by positive-ion mode mass spectrometry. However, polysaccharide chemists largely rely on negative-ion mode mass spectrometry for the analysis of highly sulfated GAGs. The current study reports a negative-ion mode cIEF-MS method using an electrokinetically pumped sheath liquid nanospray capillary electrophoresis-mass spectrometry (CE-MS) coupling technology. The feasibility of this negative-ion cIEF-MS method and its potential applications are demonstrated using chondroitin sulfate and heparan sulfate oligosaccharides mixtures.
Assuntos
Dissacarídeos/análise , Focalização Isoelétrica/métodos , Espectrometria de Massas/métodos , Proteínas de Bactérias/química , Sequência de Carboidratos , Condroitina ABC Liase/química , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/química , Dissacarídeos/química , Escherichia coli/enzimologia , Heparina Liase/química , Heparitina Sulfato/análise , Heparitina Sulfato/química , Ponto Isoelétrico , Pedobacter/enzimologia , Proteus vulgaris/enzimologiaRESUMO
Enoxaparin, one of the most important low-molecular-weight heparins (LMWHs), is widely used as a clinical anticoagulant. Different production processes and animal sources of its precursor (unfractionated heparin) can result in the structural diversity of enoxaparin. In this study, 38 lots of enoxaparin prepared at different times, from different providers and animal sources, were systematically analyzed. SEC and SAX were used to analyze the oligosaccharide dispersity and structural compositions (disaccharide domains) of enoxaparins by size and charge, respectively. The results provide clues as to whether the structural variations in enoxaparin, observed in oligosaccharide mapping and/or disaccharide analysis, are attributable to differences in the animal sources of its heparin precursor or enoxaparin production processes based on times or brands. The representative enoxaparins were fingerprinted with online multiple heart-cut two-dimensional liquid chromatography-mass spectrometry (MHC-2DLC-MS). The profiles in MHC-2DLC-MS showed the detailed structural information of enoxaparins. In addition, the binding capacities to antithrombin III (AT) of these 38 lots of enoxaparins were detected using surface plasmon resonance (SPR) with the competitive inhibition mode. The results showed that the glycan size distribution of an enoxaparin is more related to its production process. The disaccharide composition, sequence and the variety of glycans of an enoxaparin are more related to its AT binding-based anticoagulant activity.
RESUMO
The lung epithelial glycocalyx is a carbohydrate-enriched layer lining the pulmonary epithelial surface. Although epithelial glycocalyx visualization has been reported, its composition and function remain unknown. Using immunofluorescence and mass spectrometry, we identified heparan sulfate (HS) and chondroitin sulfate within the lung epithelial glycocalyx. In vivo selective enzymatic degradation of epithelial HS, but not chondroitin sulfate, increased lung permeability. Using mass spectrometry and gel electrophoresis approaches to determine the fate of epithelial HS during lung injury, we detected shedding of 20 saccharide-long or greater HS into BAL fluid in intratracheal LPS-treated mice. Furthermore, airspace HS in clinical samples from patients with acute respiratory distress syndrome correlated with indices of alveolar permeability, reflecting the clinical relevance of these findings. The length of HS shed during intratracheal LPS-induced injury (≥20 saccharides) suggests cleavage of the proteoglycan anchoring HS to the epithelial surface, rather than cleavage of HS itself. We used pharmacologic and transgenic animal approaches to determine that matrix metalloproteinases partially mediate HS shedding during intratracheal LPS-induced lung injury. Although there was a trend toward decreased alveolar permeability after treatment with the matrix metalloproteinase inhibitor, doxycycline, this did not reach statistical significance. These studies suggest that epithelial HS contributes to the lung epithelial barrier and its degradation is sufficient to increase lung permeability. The partial reduction of HS shedding achieved with doxycycline is not sufficient to rescue epithelial barrier function during intratracheal LPS-induced lung injury; however, whether complete attenuation of HS shedding is sufficient to rescue epithelial barrier function remains unknown.
Assuntos
Endotélio Vascular/efeitos dos fármacos , Glicocálix/metabolismo , Heparitina Sulfato/metabolismo , Lesão Pulmonar/tratamento farmacológico , Animais , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/induzido quimicamente , Camundongos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Sindecanas/metabolismoRESUMO
RATIONALE: N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. METHODS: Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. RESULTS: Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. CONCLUSIONS: This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins.
Assuntos
Eletroforese Capilar/métodos , Corantes Fluorescentes/química , Espectrometria de Massas/métodos , Polissacarídeos/análise , Hidróxido de Amônia/química , Soluções Tampão , Desenho de Equipamento , Fluorescência , Lasers , Espectrometria de Massas/instrumentação , Nanoestruturas , Sistemas On-Line , Polissacarídeos/química , Pirenos/química , Fluxo de TrabalhoRESUMO
RATIONALE: Heparin and low molecular weight heparin (LMWH) are widely used as clinical anticoagulants. The determination of their composition and structural heterogeneity still challenges analysts. METHODS: Disaccharide compositional analysis, utilizing heparinase-catalyzed depolymerization, is one of the most important ways to evaluate the sequence, structural composition and quality of heparin and LMWH. Hydrophilic interaction chromatography coupled with quadruple time-of-flight mass spectrometry (HILIC/QTOFMS) has been developed to analyze the resulting digestion products. RESULTS: HILIC shows good resolution and excellent MS compatibility. Digestion products of heparin and LMWHs afforded up to 16 compounds that were separated using HILIC and analyzed semi-quantitatively. These included eight common disaccharides, two disaccharides derived from chain termini, three 3-O-sulfo-group-containing tetrasaccharides, along with three linkage region tetrasaccharides and their derivatives. Structures of these digestion products were confirmed by mass spectral analysis. The disaccharide compositions of a heparin, two batches of the LMWH, enoxaparin, and two batches of the LMWH, nadroparin, were compared. In addition to identifying disaccharides, 3-O-sulfo-group-containing tetrasaccharides, linkage region tetrasaccharides were observed having slightly different compositions and contents in these heparin products suggesting that they had been prepared using different starting materials or production processes. CONCLUSIONS: Thus, compositional analysis using HILIC/QTOFMS offers a unique insight into different heparin products.
Assuntos
Cromatografia/métodos , Dissacarídeos/química , Heparina/análise , Espectrometria de Massas/métodos , Anticoagulantes/análise , Anticoagulantes/química , Dissacarídeos/análise , Heparina/química , Heparina de Baixo Peso Molecular/análise , Heparina de Baixo Peso Molecular/química , Interações Hidrofóbicas e HidrofílicasRESUMO
Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.
Assuntos
Heparina de Baixo Peso Molecular/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Fatores de TempoRESUMO
Sulodexide, a heparinoid medicine, is wildly used in clinic for prophylaxis and treatment of thromboembolic diseases and diabetic nephropathy. Despite its widespread use, the structure of Sulodexide remains poorly understood. It consists of various polysaccharides characterized by differing sugar compositions, linkages, and sulfonation patterns, yet they share common features such as strong hydrophilicity, high native charges, and considerable polydispersity, posing significant challenges for conventional chromatographic and online mass spectrometry (MS) characterization. In this work, a novel analytical method combining multiple-heart cut 2D-LC and in-source acid-induced dissociation (inAID) MS was developed. Three polysaccharides in Sulodexide were separated by high efficient strong-anion-exchange chromatography, followed by desalting with the second dimensional size-exclusion chromatography before MS. A novel MS strategy employing inAID technique was utilized for online analysis, leading to the initial identification of Sulodexide polysaccharide components. The results were validated through disaccharide composition analysis of those three polysaccharide components after offline preparation. This advanced strategy, merging various techniques, enable a comprehensive structural elucidation of such complex drugs and provides a viable tool for potential routine analysis of complex biomolecules.
Assuntos
Glicosaminoglicanos , Glicosaminoglicanos/química , Glicosaminoglicanos/análise , Espectrometria de Massas/métodos , Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodosRESUMO
Heparin-induced thrombocytopenia (HIT) is an immune complication of heparin therapy. Antibodies binding to complexes of platelet factor 4 (PF4) and heparin is the trigger of HIT. A method using size exclusion chromatography with multi-angle laser light scattering detector (SEC-MALS) was developed in this work. The soluble ultra-large complex (ULC) was separated from the small complex (SC) and their molecular weights (MWs) were firstly measured. The complexes of PF4 and three heparins with different MW, including unfractionated heparin (UFH), dalteparin (Daltep) and enoxaparin (Eno) were characterized using this method. The contents and the sizes of ULC increased gradually when heparins were added to PF4 to certain amounts. While, they reduced after more heparins were added. It is the first time to measure the MWs of the biggest ULC of PF4-heparins as millions of Dalton. at the proper ratios of PF4 to heparin (PHR). Meanwhile, those mixtures at those certain PHRs induced the higher expression of CD83 and CD14 markers on dendritic cells (DCs) suggesting that they had stronger immunogenicity and is critical for HIT.
Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/farmacologia , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Anticoagulantes/química , Trombocitopenia/induzido quimicamente , Fatores Imunológicos , Cromatografia em GelRESUMO
Heparin is the most widely used anticoagulant in clinical practice, with enoxaparin being one of the most important low molecular weight heparins (LMWHs). In this study, an antithrombin III (ATIII) affinity column was used. Enoxaparin and its oligosaccharides of varying sizes, prepared using preparative size exclusion chromatography (SEC), were fractionated through the ATIII affinity column. The different affinity fractions from each oligosaccharide size were profiled using strong anion exchange (SAX) chromatography. Each peak was automatically transferred to an SEC column for desalting prior to mass spectrometry (MS) analysis, which enabled structural identification using a multiple heart-cut (MHC) 2D LC-MS system (SAX-SEC-MS). The high-affinity fraction from enoxaparin was further analyzed using the MHC 2D LC system (SEC-SAX). SAX profiles of the high-affinity oligosaccharides, prepared by both size and affinity fractionation, were consistent with those obtained by direct SEC-SAX analysis. The possible sequences of several high-affinity hexasaccharides and the domain compositions of high-affinity octa- and decasaccharides in enoxaparin were further elucidated by disaccharide analysis after manual collection of the oligosaccharides. This work advances the understanding of enoxaparin's structural features and offers a potential approach to improve the quality of enoxaparin, as well as to identify key structural motifs in heparin/LMWHs that contribute to protein binding.
RESUMO
In this study, we prepared four derivatives of fucosylated chondroitin sulfate (FCS): full-length FCS (flFCS) from Holothuria leucospilota, low molecular weight FCS (lmFCS) derived from flFCS, and their de-branched counterparts, de-branched flFCS (d-flFCS) and de-branched lmFCS (d-lmFCS) via controlled acid treatment. Following structural verification using various analytical techniques, we applied targeted metabolomics to examine the impact of FCS on nutritional efficacy and its structure-activity relationship. Analysis of 225 plasma and feces samples from 75 mice revealed a positive correlation between metabolomic shifts and increased weight gain, underscoring FCS's potential to enhance nutrient absorption and promote growth. The observed linear relationship between the levels of short-chain fatty acids in plasma and feces suggests that FCS may facilitate catabolic activities in the gastrointestinal tract. The comparative study of different FCS derivatives on mouse growth and metabolic homeostasis regulation led to the conclusion that FCS exhibits greater biological activity with a higher degree of branching and larger molecular weight.
RESUMO
Heparin ï¼Hpï¼ is the most widely used anticoagulant drug in the clinicsï¼ with an annual global output of over 10 billion dollars. Hpï¼ a member of the glycosaminoglycans ï¼GAGsï¼ï¼ is prepared from porcine intestinal mucosa via extractionï¼ separationï¼ and purification. Hp is a linear polysaccharide with repeating disaccharide units. Low-molecular-weight heparins ï¼LMWHsï¼ are depolymerized from Hp via chemical or enzymatic degradation. Compared with Hpï¼ LMWHs exhibit less bleeding side effectï¼ milder immunogenicityï¼ and higher bioavailability when injected subcutaneously. In generalï¼ Hpsï¼ including LMWHsï¼ are high complex drugs with large molecular weights ï¼MWsï¼ï¼ inhomogeneous MW distributionsï¼ and structural heterogeneityï¼ including different degrees and locations of sulfonationï¼ and unique residues generated from different production processes. Thusï¼ developing efficient analytical methods to elucidate the structures of Hps and characterize or quantitate their properties is extremely challenging. Unfortunatelyï¼ this problem limits their quality controlï¼ production optimizationï¼ clinical safety monitoringï¼ and new applications. Research has constantly sought to elucidate the complicated structures of Hp drugs. Among the structural analysis and quality control methods of Hp currently availableï¼ chromatographic methods are the most widely studied and used. Howeverï¼ no literature thoroughly summarizes the specific applications of chromatographic methods in the structural analysisï¼ manufacturing processï¼ and quality control of Hp drugs. This paper systematically organizes and describes recent research progresses of the chromatographic methods used to analyze Hp drugsï¼ including the identification and composition of monosaccharidesï¼ disaccharidesï¼ oligosaccharidesï¼ and polysaccharides. The applicationsï¼ innovationsï¼ and limitations of these chromatographic methods are also summarized in this review. The insights obtained in this study will help production and quality control personnelï¼ as well as drug researchersï¼ obtain a deeper understanding of the complex structures of Hp drugs. This paper also provides a comprehensive reference for the structural analysis and quality control of Hpsï¼ proposes ideas for the development of new quality control methodsï¼ and lays a strong foundation for the in-depth structural elucidation of Hp drugs.
Assuntos
Heparina de Baixo Peso Molecular , Heparina , Animais , Suínos , Anticoagulantes , Cromatografia , Heparina Liase/metabolismo , DissacarídeosRESUMO
Decellularized lung scaffolds and hydrogels are increasingly being utilized in ex vivo lung bioengineering. However, the lung is a regionally heterogenous organ with proximal and distal airway and vascular compartments of different structures and functions that may be altered as part of disease pathogenesis. We previously described decellularized normal whole human lung extracellular matrix (ECM) glycosaminoglycan (GAG) composition and functional ability to bind matrix-associated growth factors. We now determine differential GAG composition and function in airway, vascular, and alveolar-enriched regions of decellularized lungs obtained from normal, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) patients. Significant differences were observed in heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA) content and CS/HS compositions between both different lung regions and between normal and diseased lungs. Surface plasmon resonance demonstrated that HS and CS from decellularized normal and COPD lungs similarly bound fibroblast growth factor 2, but that binding was decreased in decellularized IPF lungs. Binding of transforming growth factor ß to CS was similar in all three groups but binding to HS was decreased in IPF compared to normal and COPD lungs. In addition, cytokines dissociate faster from the IPF GAGs than their counterparts. The differences in cytokine binding features of IPF GAGs may result from different disaccharide compositions. The purified HS from IPF lung is less sulfated than that from other lungs, and the CS from IPF contains more 6-O-sulfated disaccharide. These observations provide further information for understanding functional roles of ECM GAGs in lung function and disease. STATEMENT OF SIGNIFICANCE: Lung transplantation remains limited due to donor organ availability and need for life-long immunosuppressive medication. One solution, the ex vivo bioengineering of lungs via de- and recellularization has not yet led to a fully functional organ. Notably, the role of glycosaminoglycans (GAGs) remaining in decellularized lung scaffolds is poorly understood despite their important effects on cell behaviors. We have previously investigated residual GAG content of native and decellularized lungs and their respective functionality, and role during scaffold recellularization. We now present a detailed characterization of GAG and GAG chain content and function in different anatomical regions of normal diseased human lungs. These are novel and important observations that further expand knowledge about functional GAG roles in lung biology and disease.
Assuntos
Glicosaminoglicanos , Doença Pulmonar Obstrutiva Crônica , Humanos , Glicosaminoglicanos/metabolismo , Pulmão/patologia , Sulfatos de Condroitina , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Matriz Extracelular/metabolismo , Dissacarídeos/análise , Dissacarídeos/metabolismoRESUMO
Low molecular weight heparins (LMWHs), depolymerized from unfractionated heparin (UFH), are widely used as anticoagulant drugs in clinic. The variable degradation methods result the different types of LMWHs, such as enoxaparin prepared by alkaline degradation following benzylation and nadroparin degraded by nitrous acid and subsequent reduction. They have different anticoagulant activities, molecular weight and special oligosaccharide sequences. Oligosaccharide analysis of the heparinase-catalyzed digestion products of heparin and LMWHs is an important way to explore the fine structural composition. In this work, a MHC-2D-LC-MS system using SAX followed by SEC and tandem to MS was applied to analyze the heparinase-products of LMWHs. 15 components of enoxaparin and 20 components of nadroparin were separated and unambiguously characterized with mass spectrum, including eight common disaccharides, and the special structural domains resistant to enzyme digestion which have the 3-O sulfated residue and/or characteristic terminal residues and the linkage region tetrasaccharides.
Assuntos
Heparina de Baixo Peso Molecular , Heparina , Anticoagulantes/química , Enoxaparina/química , Heparina/análise , Heparina Liase/metabolismo , Heparina de Baixo Peso Molecular/análiseRESUMO
Heparin is a linear sulfated polysaccharide with a complex structure. It is important to figure out the sequences at the terminals of the sugar chains, as it will help us understand the heparin structure deeper and control its quality properly. The tetrasaccharide linkage region (LR) could be a tag to help us find out heparin terminals after digestion by different combinations of heparinases. In this work, orthogonal chromatographic approaches including SAX, SEC-MS and 2D-LC-MS were applied to qualitatively and quantitatively analyze the heparinase released LR-terminals. The disaccharides next to LR are those ones with low or non-sulfation, UA-GlcNAc and UA-GlcNAc6S, and then they are extended with the highly sulfated disaccharides, IdoA2S-GlcNS and IdoA2S-GlcNS6S. It is suggested that the sulfo transferases did not work at the sugar residues next to LR terminal, especially the 2-O-sulfo and N-sulfo transferases, which could be affected by steric hindrance from LR, when heparin is biosynthesized. This conclusion will be theoretical fundamental to help us understand heparin's structure deeper. The methods provided in this work could be potential ways to control heparin's quality and monitor the production processes of heparin properly.
Assuntos
Dissacarídeos , Heparina , Dissacarídeos/química , Heparina/química , Heparina Liase , Oligossacarídeos/química , TransferasesRESUMO
The TEMPO/NaBr/NaClO system was used to modify konjac glucomannan and prepare ß-1,4-linked D-mannuronic/glucuronic acid oligosaccharides. The impact of oxidant amount on the degree of oxidation, molecular weight, terminal structure and the ratio of sugar units were systematically investigated. Mannoses were transformed to mannuronic acids quantitatively, while some glucose were transformed to glucuronic acids, some degraded. The unspecific oxidation causes strong degradation of konjac glucomannan sugar chains. Multiple terminal structures were observed in the oxidized KGM products. According to those observations, the oxidation pattern of konjac glucomannan with the TEMPO/NaBr/NaClO system was speculated. It is suggested that the axial hydroxyl group at position 2 in mannose might form a hydrogen bond with the oxygen on the sugar ring. It would against the unspecific oxidation. While, both specific and unspecific oxidations were observed at glucose units with an equatorial hydroxyl group at position 2, and the degradation occurs mostly on glucose during the oxidation.
Assuntos
Mananas , Manose , Carboidratos , Óxidos N-Cíclicos , Glucose/metabolismo , Mananas/química , Manose/metabolismoRESUMO
Carrageenan (CGN) belongs to the sulfated polysaccharides family that is commonly used in the food industry. For oligosaccharide analysis, a liquid chromatography quadrupole time-of-flight/mass spectrometry strategy was developed using a hypothetical database. There are 2100 structures in the developed hypothetical κ-CGN database. To eliminate false-positive results, three approaches were used, including size exclusion chromatography with mass spectrometry, which differentiates the loss of sulfated groups caused by the hydrolysis process or the ionization process. Profiling of acidic hydrolysis products of κ-CGN was found that after 12 h of HCl cultivation, the κ-CGN was hydrolyzed to oligosaccharides lower than the degree of polymerization 10, breaking the α-1,3-glycoside linkage and producing even-numbered oligosaccharides. Another finding was that the pH at which acidic hydrolysis is terminated affects the generation of even and odd oligosaccharides. Peeling reaction occurs at the reduction end 4-linked-3,6-anhydrous-d-galactose when adjusted to alkaline conditions, thus generating odd oligosaccharides.
Assuntos
Oligossacarídeos , Espectrometria de Massas em Tandem , Carragenina/química , Cromatografia em Gel , Hidrólise , Oligossacarídeos/química , Sulfatos/química , Espectrometria de Massas em Tandem/métodosRESUMO
Heparin is a linear sulfated polysaccharide. It is composed of a repeating disaccharide unit with different sulfo patterns. The compositional analysis after heparin was decomposed to disaccharides and enzyme resistant domains is an important way to delve into its structure. Strong anion exchange (SAX) chromatography is commonly used for the compositional analysis due to its high resolution, stability and capability of quantitation. However, nonvolatile salt in mobile phase is not compatible with MS, then the structural domains cannot be identified without standards. Here, a new two-dimensional liquid chromatography system, multiple heart cut (MHC), was developed and linked to mass spectrometry (MS) directly to provide a comprehensive analysis of enzyme digested heparin. SAX was applied as the first dimensional chromatography, in which 17 peaks were observed and integrated in the digested heparin. Size-exclusion chromatography (SEC) was used as the second dimensional chromatography to desalt efficiently. Structural information of each component was then obtained with MS, including eight common disaccharides, eight enzyme resistant tetrasaccharides and a heparin-core protein linkage domain. The comparison of enzyme digested heparins obtained from different vendors using this system suggested their similar major structure and activity, but slightly different production processes.