Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 24(1): 51, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850776

RESUMO

AIM: Deregulated signaling pathways are a hallmark feature of oncogenesis and driver of tumor progression. Dual specificity protein phosphatase 4 (DUSP4) is a critical negative regulator of the mitogen-activated protein kinase (MAPK) pathway and is often deleted or epigenetically silenced in tumors. DUSP4 alterations lead to hyperactivation of MAPK signaling in many cancers, including breast cancer, which often harbor mutations in cell cycle checkpoint genes, particularly in TP53. METHODS: Using a genetically engineered mouse model, we generated mammary-specific Dusp4-deleted primary epithelial cells to investigate the necessary conditions in which DUSP4 loss may drive breast cancer oncogenesis. RESULTS: We found that Dusp4 loss alone is insufficient in mediating tumorigenesis, but alternatively converges with loss in Trp53 and MYC amplification to induce tumorigenesis primarily through chromosome 5 amplification, which specifically upregulates Dbf4, a cell cycle gene that promotes cellular replication by mediating cell cycle checkpoint escape. CONCLUSIONS: This study identifies a novel mechanism for breast tumorigenesis implicating Dusp4 loss and p53 mutations in cellular acquisition of Dbf4 upregulation as a driver of cellular replication and cell cycle checkpoint escape.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno , Proteína Supressora de Tumor p53 , Animais , Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Camundongos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
J Environ Qual ; 45(2): 675-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065415

RESUMO

Crop canopy reflectance sensors make it possible to estimate crop N demand and apply appropriate N fertilizer rates at different locations in a field, reducing fertilizer input and associated environmental impacts while maintaining crop yield. Environmental benefits, however, have not been quantified previously. The objective of this study was to estimate the environmental impact of sensor-based N fertilization of corn using model-based environmental Life Cycle Assessment. Nitrogen rate and corn grain yield were measured during a sensor-based, variable N-rate experiment in Lincoln County, MO. Spatially explicit soil properties were derived using a predictive modeling technique based on in-field soil sampling. Soil NO emissions, volatilized NH loss, and soil NO leaching were predicted at 60 discrete field locations using the DeNitrification-DeComposition (DNDC) model. Life cycle cumulative energy consumption, global warming potential (GWP), acidification potential, and eutrophication potential were estimated using model predictions, experimental data, and life cycle data. In this experiment, variable-rate N management reduced total N fertilizer use by 11% without decreasing grain yield. Precision application of N is predicted to have reduced soil NO emissions by 10%, volatilized NH loss by 23%, and NO leaching by 16%, which in turn reduced life cycle nonrenewable energy consumption, GWP, acidification potential, and eutrophication potential by 7, 10, 22, and 16%, respectively. Although mean N losses were reduced, the variations in N losses were increased compared with conventional, uniform N application. Crop canopy sensor-based, variable-rate N fertilization was predicted to increase corn grain N use efficiency while simultaneously reducing total life-cycle energy use, GWP, acidification, and eutrophication.


Assuntos
Fertilizantes , Nitrogênio/análise , Agricultura , Colorado , Solo , Zea mays
3.
Sci Total Environ ; 934: 172905, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703856

RESUMO

Antibiotic resistance is increasingly recognized as a critical challenge affecting human, animal, and environmental health. Yet, environmental dynamics and transport of antibiotic resistance genes (ARGs) and microbial communities in karst and non-karst leachate following poultry litter land applications are not well understood. This study investigates impacts of broiler poultry litter application on the proliferation of ARGs (tetW, qnrS, ermB, sulI, and blaCTX-M-32), class 1 integron (intI1 i), and alterations in microbial communities (16S rRNA) within karst derived soils, which are crucial and under-researched systems in the global hydrological cycle, and non-karst landscapes. Using large, intact soil columns (45 cm diam. × 100 cm depth) from karst and non-karst landscapes, the role of preferential flow and ARG transport in leachate was enumerated following surface application of poultry litter and simulated rain events. This research demonstrated that in poultry litter amended karst soils, ARG (i.e., ermB and tetW) abundance in leachate increased 1.5 times compared to non-karst systems (p < 0.05), highlighting the influence of geological factors on ARG proliferation. Notably, microbial communities in karst soil leachate exhibited increased diversity and abundance, suggesting a potential linkage between microbial composition and ARG presence. Further, our correlation and network analyses identified relationships between leachate ARGs, microbial taxa, and physicochemical properties, underscoring the complex interplay in these environmentally sensitive areas. These findings illuminate the critical role of karst systems in shaping ARG abundance and pollutant dispersal and microbial community dynamics, thus emphasizing the need for landscape-specific approaches in managing ARG dissemination to the environment. This study provides a deeper understanding of hydrogeological ARG dynamics but also lays the groundwork for future research and strategies to mitigate ARG dissemination through targeted manure applications across agricultural landscapes.


Assuntos
Resistência Microbiana a Medicamentos , Aves Domésticas , Microbiologia do Solo , Animais , Resistência Microbiana a Medicamentos/genética , Microbiota/efeitos dos fármacos , Esterco/microbiologia , Solo/química , Monitoramento Ambiental , Genes Bacterianos
4.
Sci Total Environ ; 919: 170972, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360318

RESUMO

Assessment and proper management of sites contaminated with heavy metals require precise information on the spatial distribution of these metals. This study aimed to predict and map the distribution of Cd, Cu, Ni, Pb, and Zn across the conterminous USA using point observations, environmental variables, and Histogram-based Gradient Boosting (HGB) modeling. Over 9180 surficial soil observations from the Soil Geochemistry Spatial Database (SGSD) (n = 1150), the Geochemical and Mineralogical Survey of Soils (GMSS) (n = 4857), and the Holmgren Dataset (HD) (n = 3400), and 28 covariates (100 m × 100 m grid) representing climate, topography, vegetation, soils, and anthropic activity were compiled. Model performance was evaluated on 20 % of the data not used in calibration using the coefficient of determination (R2), concordance correlation coefficient (ρc), and root mean square error (RMSE) indices. Uncertainty of predictions was calculated as the difference between the estimated 95 and 5 % quantiles provided by HGB. The model explained up to 50 % of the variance in the data with RMSE ranging between 0.16 (mg kg-1) for Cu and 23.4 (mg kg-1) for Zn, respectively. Likewise, ρc ranged between 0.55 (Cu) and 0.68 (Zn), respectively, and Zn had the highest R2 (0.50) among all predictions. We observed high Pb concentrations near urban areas. Peak concentrations of all studied metals were found in the Lower Mississippi River Valley. Cu, Ni, and Zn concentrations were higher on the West Coast; Cd concentrations were higher in the central USA. Clay, pH, potential evapotranspiration, temperature, and precipitation were among the model's top five important covariates for spatial predictions of heavy metals. The combined use of point observations and environmental covariates coupled with machine learning provided a reliable prediction of heavy metals distribution in the soils of the conterminous USA. The updated maps could support environmental assessments, monitoring, and decision-making with this methodology applicable to other soil databases, worldwide.

5.
Front Microbiol ; 14: 1227006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886073

RESUMO

Animal manure improves soil fertility and organic carbon, but long-term deposition may contribute to antibiotic resistance genes (ARGs) entering the soil-water environment. Additionally, long-term impacts of applying animal manure to soil on the soil-water microbiome, a crucial factor in soil health and fertility, are not well understood. The aim of this study is to assess: (1) impacts of long-term conservation practices on the distribution of ARGs and microbial dynamics in soil, and runoff; and (2) associations between bacterial taxa, heavy metals, soil health indicators, and ARGs in manures, soils, and surface runoff in a study following 15 years of continuous management. This management strategy consists of two conventional and three conservation systems, all receiving annual poultry litter. High throughput sequencing of the 16S ribosomal RNA was carried out on samples of cattle manure, poultry litter, soil, and runoff collected from each manureshed. In addition, four representative ARGs (intl1, sul1, ermB, and blactx-m-32) were quantified from manures, soil, and runoff using quantitative PCR. Results revealed that conventional practice increased soil ARGs, and microbial diversity compared to conservation systems. Further, ARGs were strongly correlated with each other in cattle manure and soil, but not in runoff. After 15-years of conservation practices, relationships existed between heavy metals and ARGs. In the soil, Cu, Fe and Mn were positively linked to intl1, sul1, and ermB, but trends varied in runoff. These findings were further supported by network analyses that indicated complex co-occurrence patterns between bacteria taxa, ARGs, and physicochemical parameters. Overall, this study provides system-level linkages of microbial communities, ARGs, and physicochemical conditions based on long-term conservation practices at the soil-water-animal nexus.

6.
Front Microbiol ; 14: 1248772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720139

RESUMO

Introduction: Aflatoxin (AFL), a secondary metabolite produced from filamentous fungi, contaminates corn, posing significant health and safety hazards for humans and livestock through toxigenic and carcinogenic effects. Corn is widely used as an essential commodity for food, feed, fuel, and export markets; therefore, AFL mitigation is necessary to ensure food and feed safety within the United States (US) and elsewhere in the world. In this case study, an Iowa-centric model was developed to predict AFL contamination using historical corn contamination, meteorological, satellite, and soil property data in the largest corn-producing state in the US. Methods: We evaluated the performance of AFL prediction with gradient boosting machine (GBM) learning and feature engineering in Iowa corn for two AFL risk thresholds for high contamination events: 20-ppb and 5-ppb. A 90%-10% training-to-testing ratio was utilized in 2010, 2011, 2012, and 2021 (n = 630), with independent validation using the year 2020 (n = 376). Results: The GBM model had an overall accuracy of 96.77% for AFL with a balanced accuracy of 50.00% for a 20-ppb risk threshold, whereas GBM had an overall accuracy of 90.32% with a balanced accuracy of 64.88% for a 5-ppb threshold. The GBM model had a low power to detect high AFL contamination events, resulting in a low sensitivity rate. Analyses for AFL showed satellite-acquired vegetative index during August significantly improved the prediction of corn contamination at the end of the growing season for both risk thresholds. Prediction of high AFL contamination levels was linked to aflatoxin risk indices (ARI) in May. However, ARI in July was an influential factor for the 5-ppb threshold but not for the 20-ppb threshold. Similarly, latitude was an influential factor for the 20-ppb threshold but not the 5-ppb threshold. Furthermore, soil-saturated hydraulic conductivity (Ksat) influenced both risk thresholds. Discussion: Developing these AFL prediction models is practical and implementable in commodity grain handling environments to achieve the goal of preventative rather than reactive mitigations. Finding predictors that influence AFL risk annually is an important cost-effective risk tool and, therefore, is a high priority to ensure hazard management and optimal grain utilization to maximize the utility of the nation's corn crop.

7.
Front Microbiol ; 14: 1283127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029202

RESUMO

Mycotoxin contamination of corn is a pervasive problem that negatively impacts human and animal health and causes economic losses to the agricultural industry worldwide. Historical aflatoxin (AFL) and fumonisin (FUM) mycotoxin contamination data of corn, daily weather data, satellite data, dynamic geospatial soil properties, and land usage parameters were modeled to identify factors significantly contributing to the outbreaks of mycotoxin contamination of corn grown in Illinois (IL), AFL >20 ppb, and FUM >5 ppm. Two methods were used: a gradient boosting machine (GBM) and a neural network (NN). Both the GBM and NN models were dynamic at a state-county geospatial level because they used GPS coordinates of the counties linked to soil properties. GBM identified temperature and precipitation prior to sowing as significant influential factors contributing to high AFL and FUM contamination. AFL-GBM showed that a higher aflatoxin risk index (ARI) in January, March, July, and November led to higher AFL contamination in the southern regions of IL. Higher values of corn-specific normalized difference vegetation index (NDVI) in July led to lower AFL contamination in Central and Southern IL, while higher wheat-specific NDVI values in February led to higher AFL. FUM-GBM showed that temperature in July and October, precipitation in February, and NDVI values in March are positively correlated with high contamination throughout IL. Furthermore, the dynamic geospatial models showed that soil characteristics were correlated with AFL and FUM contamination. Greater calcium carbonate content in soil was negatively correlated with AFL contamination, which was noticeable in Southern IL. Greater soil moisture and available water-holding capacity throughout Southern IL were positively correlated with high FUM contamination. The higher clay percentage in the northeastern areas of IL negatively correlated with FUM contamination. NN models showed high class-specific performance for 1-year predictive validation for AFL (73%) and FUM (85%), highlighting their accuracy for annual mycotoxin prediction. Our models revealed that soil, NDVI, year-specific weekly average precipitation, and temperature were the most important factors that correlated with mycotoxin contamination. These findings serve as reliable guidelines for future modeling efforts to identify novel data inputs for the prediction of AFL and FUM outbreaks and potential farm-level management practices.

8.
J Environ Monit ; 14(1): 292-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22130453

RESUMO

Following the remediation of animal manure spills that reach surface waters, contaminated streambed sediments are often left in place and become a source for internal phosphorus (P) loading within the stream in subsequent flow. The objective of this study was to develop treatment rates and combinations of alum and CaCO(3) to mitigate P from contaminated sediments of different particle size distributions following a manure spill. Sediment specific alum and CaCO(3) treatment rates were developed based upon the resultant alum treatment ranges established for each sediment type. Clay loam sediments required 54% more alum to mitigate P desorption relative to sediments that contain at least 60% sand. Amending sediments with the highest rates of alum/alum + CaCO(3), resulted in a 98-100% reduction in P desorption and a similar water column pH for all sediments types. Observations from this study demonstrated the effectiveness of alum/alum + CaCO(3) to increase P retention in sediments following a manure spill.


Assuntos
Compostos de Alúmen/química , Recuperação e Remediação Ambiental/métodos , Esterco/análise , Fósforo/química , Poluentes Químicos da Água/química , Agricultura/estatística & dados numéricos , Carbonato de Cálcio/química , Monitoramento Ambiental , Sedimentos Geológicos/química , Fósforo/análise , Poluentes Químicos da Água/análise
9.
Sci Rep ; 12(1): 3508, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241716

RESUMO

Systems-level studies aimed at determining how soil properties are linked to plant production and ultimately animal response spatially are lacking. This study aims to identify if grazing pressure is linked to soil properties, terrain attributes, and above-ground plant accumulation and nutritive value in a silvopastoral (or integrated tree-livestock) system. Overall, cattle prefer grazing native grasses (2.81 vs. 1.24 h ha-1 AU-1) and udic (dry) landscape positions compared to aquic (wet) areas (2.07 vs. 1.60 h ha-1 AU-1). Greater grazing frequency occurs in udic soils with greater phosphorus and potassium contents and with accumulated forage with less lignin (P ≤ 0.05), which correspond to reduced elevation and greater tree height and diameter (shade) during summer mob grazing. Combining spatial monitoring technologies (both soil and animal) with forage allowance can optimize grazing systems management and sustainability spatially and temporally.


Assuntos
Solo , Água , Ração Animal , Criação de Animais Domésticos , Animais , Bovinos , Gado , Plantas , Poaceae , Árvores
10.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35324479

RESUMO

As blood transitions from steady laminar flow (S-flow) in healthy arteries to disturbed flow (D-flow) in aneurysmal arteries, platelets are subjected to external forces. Biomechanical platelet activation is incompletely understood and is a potential mechanism behind antiplatelet medication resistance. Although it has been demonstrated that antiplatelet drugs suppress the growth of abdominal aortic aneurysms (AAA) in patients, we found that a certain degree of platelet reactivity persisted in spite of aspirin therapy, urging us to consider additional antiplatelet therapeutic targets. Transcriptomic profiling of platelets from patients with AAA revealed upregulation of a signal transduction pathway common to olfactory receptors, and this was explored as a mediator of AAA progression. Healthy platelets subjected to D-flow ex vivo, platelets from patients with AAA, and platelets in murine models of AAA demonstrated increased membrane olfactory receptor 2L13 (OR2L13) expression. A drug screen identified a molecule activating platelet OR2L13, which limited both biochemical and biomechanical platelet activation as well as AAA growth. This observation was further supported by selective deletion of the OR2L13 ortholog in a murine model of AAA that accelerated aortic aneurysm growth and rupture. These studies revealed that olfactory receptors regulate platelet activation in AAA and aneurysmal progression through platelet-derived mediators of aortic remodeling.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Receptores Odorantes , Animais , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Aneurisma da Aorta Abdominal/genética , Plaquetas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Ativação Plaquetária , Inibidores da Agregação Plaquetária/uso terapêutico , Receptores Odorantes/genética
11.
Front Microbiol ; 12: 617066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897633

RESUMO

Runoff from land-applied manure and poultry litter is one mechanism by which manure-borne bacteria are transported over large distances in the environment. There is a global concern that antimicrobial resistant (AMR) genes may be transmitted through the food chain from animal manures to soil to surface water. However, details are lacking on the ecology of AMR genes in water runoff as well as how conservation management practices may affect the runoff microbiome or minimize the movement of AMR genes. The aim of this study was to identify microbial community structure and diversity in water runoff following 14-years of poultry litter and cattle manure deposition and to evaluate the amount of AMR genes under five conventional and conservation pasture management strategies. Since 2004, all watersheds received annual poultry litter at a rate of 5.6 Mg ha-1 and were consistently managed. Surface runoff samples were collected from each watershed from 2018 to 2019, characterized using Illumina 16S rRNA gene amplicon sequencing and enumerated for four AMR-associated genes (ermB, sulI, intlI, and blactx-m-32 ) using quantitative PCR. Overall, long-term pasture management influenced water microbial community structure, with effects differing by year (p < 0.05). Bacterial richness (Chao1 index) was influenced by pasture management, with the lowest richness occurring in the control (nearby non-agricultural water source) and the greatest under fields that were hayed (no cattle presence). Runoff bacterial richness in watersheds increased following poultry litter applications, indicating poultry litter is a possible source of bacteria and altered runoff community structure. The blactx-m-32 gene was not detected in any surface water sample. The remaining three AMR genes were absent in the non-agricultural control, but present in agricultural samples. However, there was no impact (p > 0.05) from pasture management on the abundance of these genes, indicating both conventional and conservation practices have similar ecologies for these targets; however, there was a greater detection of sulI genes from runoff in continuously grazed systems in 2019, with hay being lowest in 2019. Results illustrate that the edge of field buffer strips may increase bacterial richness in water runoff, but these changes in richness do not greatly impact target AMR genes in the United States largest land-use category.

12.
Heliyon ; 7(2): e06238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659751

RESUMO

Producers in Northwest Arkansas and globally need alternative management practices to ensure long-term sustainable and economical use of poultry litter, which is an abundant source of valuable carbon (C), nitrogen (N) and phosphorus (P). Project objectives were to measure the efficacy of conservation management practices (i.e., pasture aeration and subsurface litter incorporation) to reduce nutrient runoff compared to poultry litter surface applications from small watersheds under rainfed and grazed conditions. Watersheds (0.23 ha each) were assigned a treatment [pasture aeration, subsurface litter incorporation, or surface application of litter (positive control)] on a Leadvale (fine-silty, siliceous, thermic Typic Fragiudult) silt loam. Poultry litter was applied annually to each watershed from 2007-2012. Over the 4-yr study period, runoff loads of NO3-N, total nitrogen (TN), soluble reactive phosphorus (SRP), and total phosphorus (TP) varied per conservation practice (P ≤ 0.05). Specifically, average annual loads of NO3-N, TN, SRP, and TP loads were reduced 49, 42, 28, and 35% following pasture aeration and by 78, 72, 55, and 59% from subsurface applying poultry litter, relative to surface applications, respectively. Greatest annual N loads and runoff corresponded with surface poultry litter applications, followed by pasture aeration, with subsurface incorporation of poultry litter resulting in lowest (P ≤ 0.05) TN and NO3-N loads. Overall, subsurface incorporation of poultry litter and pasture aeration are two promising conservation practices for reducing non-point source pollution in watersheds with nutrient imbalances. Further work needs to be done on factors influencing the efficacy of these conservation practices under rainfed conditions, as well as the economic feasibility of these conservation agricultural practices.

13.
J Environ Qual ; 39(1): 345-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20048322

RESUMO

Animal manure spills contribute to P loading of surface waters and little is known about the effectiveness of the current manure spill clean-up methods to mitigate P contamination. Manure spill clean-up consists of containing, removing, and land applying the contaminated water column, while P-enriched fluvial sediments remain in place. Therefore, the objectives of this study were to (i) understand how P partitions between the water column and fluvial sediments during a manure spill, and (ii) evaluate the efficacy of current manure spill clean-up methods to remediate manure contaminated sediments. Manure spill simulations were conducted using fluvarium techniques and sediments collected from three drainage areas of two drainage ditches. Sediments with the greatest clay content (33%) resulted in a significantly greater P buffering capacity (10.3 L kg(-1)) and removed P from the water column at the greatest rate during the manure spill simulation relative to sediments with < 6% clay. Phosphorus uptake length for all sediments ranged from 574 to 815 m and the adsorption flux ranged from 8.9 to 16.7 mg m(-2) h(-1). After simulating the current manure spill remediation methods, P desorbed to the water from all sediments exceeded the Environmental Protection Agency total P criteria (0.076 mg L(-1)) for the region by at least 67%. Furthermore, results from this study suggest that the current manure spill remediation method needs refining to mitigate P from the total fluvial system water column and sediment following a spill.


Assuntos
Simulação por Computador , Esterco , Modelos Químicos , Fósforo/química , Poluentes Químicos da Água/química , Poluição da Água/prevenção & controle , Movimentos da Água
14.
PeerJ ; 8: e10258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194426

RESUMO

The persistence of antimicrobial resistant (AMR) genes in the soil-environment is a concern, yet practices that mitigate AMR are poorly understood, especially in grasslands. Animal manures are widely deposited on grasslands, which are the largest agricultural land-use in the United States. These nutrient-rich manures may contain AMR genes. The aim of this study was to enumerate AMR genes in grassland soils following 14-years of poultry litter and cattle manure deposition and evaluate if best management practices (rotationally grazed with a riparian (RBR) area and a fenced riparian buffer strip (RBS), which excluded cattle grazing and poultry litter applications) relative to standard pasture management (continuously grazed (CG) and hayed (H)) minimize the presence and amount of AMR genes. Quantitative PCR (Q-PCR) was performed to enumerate four AMR genes (ermB, sulI, intlI, and blactx-m-32 ) in soil, cattle manure, and poultry litter environments. Six soil samples were additionally subjected to metagenomic sequencing and resistance genes were identified from assembled sequences. Following 14-years of continuous management, ermB, sulI, and intlI genes in soil were greatest (P < 0.05) in samples collected under long-term continuous grazing (relative to conservation best management practices), under suggesting overgrazing and continuous cattle manure deposition may increase AMR gene presence. In general, AMR gene prevalence increased downslope, suggesting potential lateral movement and accumulation based on landscape position. Poultry litter had lower abundance of AMR genes (ermB, sulI, and intlI) relative to cattle manure. Long-term applications of poultry litter increased the abundance of sulI and intlI genes in soil (P < 0.05). Similarly, metagenomic shotgun sequencing revealed a greater total number of AMR genes under long-term CG, while fewer AMR genes were found in H (no cattle manure) and RBS (no animal manure or poultry litter). Results indicate long-term conservation pasture management practices (e.g., RBS and RBR) and select animal manure (poultry litter inputs) may minimize the presence and abundance of AMR genes in grassland soils.

15.
J Environ Qual ; 49(1): 85-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33016357

RESUMO

Phosphorus (P) runoff from pastures can cause accelerated eutrophication of surface waters. However, few long-term studies have been conducted on the effects of best management practices, such as rotational grazing and/or buffer strips on P losses from pastures. The objective of this study was to evaluate the long-term effects of grazing management and buffer strips on P runoff from pastures receiving annual (5.6 Mg ha-1 ) poultry litter applications. A 14-yr study was conducted on 15 small watersheds (0.14 ha) with five treatments: hayed (H), continuously grazed (CG), rotationally grazed (R), rotationally grazed with an unfertilized buffer strip (RB), and rotationally grazed with an unfertilized fenced riparian buffer (RBR). Runoff samples were collected using automatic samplers during runoff events. Average annual runoff volumes from H (40 mm yr-1 ) and RBR (48 mm yr-1 ) were lower than CG and RB, which were both 65 mm yr-1 , and from R (67 mm yr-1 ). Rotational grazing alone did not reduce P loads compared with continuous grazing (1.88 and 1.71 kg P ha-1 for R and CG, respectively). However, compared with CG, total P losses from RB pastures were reduced 36% with unfertilized buffer strips (1.21 kg P ha-1 ), 60% in RBR watersheds with unfertilized fenced riparian buffer strips (0.74 kg P ha-1 ), and 49% by converting pastures to hayfields (0.97 kg P ha-1 ). Hence, the use of unfertilized buffer strips, unfertilized fenced riparian buffer strips, or converting pastures to hayfields are effective best management practices for reducing P runoff in U.S. pasture systems.


Assuntos
Fósforo , Aves Domésticas , Animais , Esterco , Movimentos da Água
16.
Sci Total Environ ; 667: 833-845, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30852437

RESUMO

Carbon stored in soils contributes to a variety of soil functions, including biomass production, water storage and filtering, biodiversity maintenance, and many other ecosystem services. Understanding soil organic carbon (SOC) spatial distribution and projection of its future condition is essential for future CO2 emission estimates and management options for storing carbon. However, modeling SOC spatiotemporal dynamics is challenging due to the inherent spatial heterogeneity and data limitation. The present study developed a spatially explicit prediction model in which the spatial relationship between SOC observation and seventeen environmental variables was established using the Cubist regression tree algorithm. The model was used to compile a baseline SOC stock map for the top 30 cm soil depth in the State of Wisconsin (WI) at a 90 m × 90 m grid resolution. Temporal SOC trend was assessed by comparing baseline and future SOC stock maps based on the space-for-time substitution model. SOC prediction for future considers land use, precipitation and temperature for the year 2050 at medium (A1B) CO2 emissions scenario of the Intergovernmental Panel on Climate Change. Field soil observations were related to factors that are known to influence SOC distribution using the digital soil mapping framework. The model was validated on 25% test profiles (R2: 0.38; RMSE: 0.64; ME: -0.03) that were not used during model training that used the remaining 75% of the data (R2: 0.76; RMSE: 0.40; ME: -0.006). In addition, maps of the model error, and areal extent of Cubist prediction rules were reported. The model identified soil parent material and land use as key drivers of SOC distribution including temperature and precipitation. Among the terrain attributes, elevation, mass-balance index, mid-slope position, slope-length factor and wind effect were important. Results showed that Wisconsin soils had an average baseline SOC stock of 90 Mg ha-1 and the distribution was highly variable (CV: 64%). It was estimated that WI soils would have an additional 20 Mg ha-1 SOC by the year 2050 under changing land use and climate. Histosols and Spodosols were expected to lose 19 Mg ha-1 and 4 Mg ha-1, respectively, while Mollisols were expected to accumulate the largest SOC stock (62 Mg ha-1). All land-use types would be accumulating SOC by 2050 except for wetlands (-34 Mg C ha-1). This study found that Wisconsin soils will continue to sequester more carbon in the coming decades and most of the Driftless Area will be sequestering the greatest SOC (+63 Mg C ha-1). Most of the SOC would be lost from the Northern Lakes and Forests ecological zone (-12 Mg C ha-1). The study highlighted areas of potential C sequestration and areas under threat of C loss. The maps generated in this study would be highly useful in farm management and environmental policy decisions at different spatial levels in Wisconsin.

17.
Environ Sci Pollut Res Int ; 26(15): 14920-14929, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30911970

RESUMO

In 2008, the Mulberry River, a National Wild and Scenic River, was listed as impaired due to low pH (below pH 6.0). Over the last 50 years, the volume of conifers in the Ozark region has increased 115% since 1978 which may result in the acidification of nearby aquatic ecosystems. The objective of this study was to determine if differences exist in soil and litter chemical properties between deciduous and coniferous tree stands. Aboveground litter (n = 200) and soil (n = 400) at 0- to 5- and 5- to 15-cm depths were collected at paired deciduous and coniferous stands at 10 locations within the Mulberry River watershed and analyzed for a suite of chemical parameters. There were no differences (P > 0.05) in several measures of soil acidity between deciduous and coniferous stands. Litter collected from the coniferous stands was more acidic than deciduous litter (4.4 vs 4.7; P < 0.05). Cation exchange capacity, exchangeable Ca and Mg, and water-soluble P and Mg contents differed (P < 0.05) by stand and depth. Cation exchange capacity and exchangeable Ca and Mg were greatest in the 0- to 5-cm depth interval of the coniferous stands. Water-soluble P and Mg contents were greatest within the 0- to 5-cm depth interval which did not differ (P > 0.05) between stand but were greater than the 5- to 15-cm depth interval. Although limited to the top 15-cm of soil, the similarity in soil acidity between stands suggests that conifer growth may not be a substantial source of acidity to the Mulberry River.


Assuntos
Solo/química , Traqueófitas , Arkansas , Cálcio/análise , Cátions/análise , Ecossistema , Magnésio/análise , Fósforo/análise , Rios , Traqueófitas/química , Árvores
18.
J Environ Qual ; 48(3): 594-602, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31180443

RESUMO

Water movement over and through soil is largely driven by topography and soil management across landscapes. This research tested the hypothesis that the water movement determines the potential for P and Ca redistribution and pH variance across landscapes. This hypothesis was evaluated by using digital elevation model-derived terrain attributes in fields after 55 yr of broiler litter applications on pastures in Smith County, Mississippi. Results show that soils receiving broiler litter had mean Mehlich-3 P levels of 1221.8 mg kg at 0- to 15-cm depth and 618.6 mg kg at 15- to 30-cm depth, and Ca with mean values of 768.3 and 645.0 mg kg at 0- to 15-cm and 15- to 30-cm soil depths, respectively. Across fields, soils in areas of predicted convergent flow contained higher P, Ca, and lower pH values in the upper 0 to 15 cm, suggesting contributions via surface overland flow from areas with higher elevation and lower slope gradient. On the other hand, soils in areas with lesser slope and higher elevation also contained high levels of P, Ca, and pH for the subsurface soil depth, suggesting that vertical flow of water on this landscape is a mechanism for movement of P and Ca deeper in the profile. The incorporation of topographic characteristics across fields offers promising results that may be incorporated into improved P indices and management, making them more robust indicators of P mobilization to waterways.


Assuntos
Fósforo , Solo , Animais , Cálcio , Galinhas , Concentração de Íons de Hidrogênio , Esterco , Mississippi
19.
Environ Sci Pollut Res Int ; 26(15): 14930-14931, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31012073

RESUMO

Fig. 1. was amended to reduce the size of the map and improve formatting of the manuscript. The authors claim this amendment does not affect the information being conveyed.

20.
Front Microbiol ; 10: 2639, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803164

RESUMO

Since the onset of land application of poultry litter, transportation of microorganisms, antibiotics, and disinfectants to new locations has occurred. While some studies provide evidence that antimicrobial resistance (AMR), an evolutionary phenomenon, could be influenced by animal production systems, other research suggests AMR originates in the environment from non-anthropogenic sources. In addition, AMR impacts the effective prevention and treatment of poultry illnesses and is increasingly a threat to global public health. Therefore, there is a need to understand the dissemination of AMR genes to the environment, particularly those directly relevant to animal health using the One Health Approach. This review focuses on the potential movement of resistance genes to the soil via land application of poultry litter. Additionally, we highlight impacts of AMR on microbial ecology and explore hypotheses explaining gene movement pathways from U.S. broiler operations to the environment. Current approaches for decreasing antibiotic use in U.S. poultry operations are also described in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA