Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Microbiol ; 22(1): 180, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864456

RESUMO

BACKGROUND: The emergence of antimicrobial resistant bacteria in food producing animals is of growing concern to food safety and health. Staphylococci are common inhabitants of skin and mucous membranes in humans and animals. Infections involving antibiotic resistant staphylococci are associated with increased morbidity and mortality, with notable economic consequences. Livestock farms may enable cross-species transfer of antibiotic resistant staphylococci. The aim of the study was to investigate antimicrobial resistance patterns of staphylococci isolated from livestock and farm attendants in Northern Ghana using phenotypic and genotypic methods. Antimicrobial susceptibility testing was performed on staphylococci recovered from livestock and farm attendants and isolates resistant to cefoxitin were investigated using whole genome sequencing. RESULTS: One hundred and fifty-two staphylococci comprising S. sciuri (80%; n = 121), S. simulans (5%; n = 8), S. epidermidis (4%; n = 6), S. chromogens (3%; n = 4), S. aureus (2%; n = 3), S. haemolyticus (1%; n = 2), S. xylosus (1%; n = 2), S. cohnii (1%; n = 2), S. condimenti (1%; n = 2), S. hominis (1%; n = 1) and S. arlettae (1%; n = 1) were identified. The isolates showed resistance to penicillin (89%; n = 135), clindamycin (67%; n = 102), cefoxitin (19%; n = 29), tetracycline (15%; n = 22) and erythromycin (11%; n = 16) but showed high susceptibility to gentamicin (96%; n = 146), sulphamethoxazole/trimethoprim (98%; n = 149) and rifampicin (99%; n = 151). All staphylococci were susceptible to linezolid and amikacin. Carriage of multiple resistance genes was common among the staphylococcal isolates. Genome sequencing of methicillin (cefoxitin) resistant staphylococci (MRS) isolates revealed majority of S. sciuri (93%, n = 27) carrying mecA1 (which encodes for beta-lactam resistance) and the sal(A) gene, responsible for resistance to lincosamide and streptogramin. Most of the MRS isolates were recovered from livestock. CONCLUSION: The study provides insights into the genomic content of MRS from farm attendants and livestock in Ghana and highlights the importance of using whole-genome sequencing to investigate such opportunistic pathogens. The finding of multi-drug resistant staphylococci such as S. sciuri carrying multiple resistant genes is of public health concern as they could pose a challenge for treatment of life-threatening infections that they may cause.


Assuntos
Infecções Estafilocócicas , Staphylococcus , Animais , Antibacterianos/farmacologia , Cefoxitina , Farmacorresistência Bacteriana/genética , Fazendas , Genômica , Gana , Humanos , Gado , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus , Staphylococcus epidermidis
2.
PLoS One ; 19(1): e0296971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252613

RESUMO

INTRODUCTION: Salmonella is considered one of the most significant pathogens in public health since it is a bacterium that is frequently linked to food-borne illnesses in humans. Some Salmonella serovars are responsible for outbreaks that are connected to the consumption of animal products. Cattle are connected to humans through a shared environment and the food chain as a significant source of animal protein. In Nigeria, antimicrobial medications are easily accessible for use in food-producing animals. Abattoir environments are reservoirs of foodborne bacteria like non-typhoidal Salmonella enterica (NTS), that have become resistant to antibiotics used for prophylaxis or treatment in animals. This study investigated the prevalence and resistance patterns of Salmonella enterica serovars in abattoir employees, beef cattle and abattoir environments in Abuja and Lagos, Nigeria. METHODS: A total of 448 samples were collected from healthy personnel, slaughtered cattle, and abattoir environments between May and December 2020. Using Kirby-Bauer disk diffusion method, the resistance profile of NTS isolates were determined. Multidrug resistance (MDR) was considered when NTS was resistant to ≥3 antimicrobial drug classes. We performed phenotypic and genotypic characterizations of all Salmonella isolates including serotyping. Descriptive statistics were used to analyze the data. RESULTS: Twenty-seven (6%) NTS isolates were obtained. Prevalence of NTS was highest in abattoir environments (15.5%; 9/58), followed by cattle (4.8%;13/272) and abattoir employees (4.2%; 5/118). A high prevalence of resistance was observed for gentamicin (85.2%; 23/27) and tetracycline (77.8%; 21/27). Whole-genome sequencing of 22 NTS showed dissemination of aac(6')-laa (22/22), qnrB19 (1/22), fosA7 (1/22), and tetA (1/22) genes. Serovar diversity of NTS varied with source. S. Anatum, a rare serovar predominated with a prevalence of 18.2% (4/22). Chromosomal point mutations showed ParC T57S substitution in 22 NTS analyzed. Among 22 NTS, 131 mobile genetic elements (MGEs) were detected including insertion sequences (56.5%) and miniature inverted repeats (43.5%). Two integrating MGEs IS6 and IS21 were observed to carry the tetA gene + Incl-1 on the same contig in NTS originating from cattle. Rare serovars namely S. Abony and S. Stormont with MDR phenotypes recovered from cattle and abattoir environments were closely related with a pairwise distance of ≤5 SNPs. CONCLUSIONS: First report of rare serovars in Nigeria with MDR phenotypes in humans, cattle, and abattoir environments. This study demonstrates the spread of resistance in the abattoir environment possibly by MGEs and emphasizes the importance of genomic surveillance. Beef cattle may be a risk to public health because they spread a variety of rare Salmonella serovars. Therefore, encouraging hand hygiene among abattoir employees while processing beef cattle will further reduce NTS colonization in this population. This requires a One Health collaborative effort among various stakeholders in human health, animal health, and environmental health.


Assuntos
Peixes-Gato , Salmonella enterica , Febre Tifoide , Humanos , Bovinos , Animais , Sorogrupo , Salmonella enterica/genética , Nigéria/epidemiologia , Matadouros , Antibacterianos/farmacologia
3.
Microorganisms ; 12(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38930521

RESUMO

Escherichia coli, a member of the commensal intestinal microbiota, is a significant aetiology of urinary tract infections (UTIs) and has a propensity for acquiring multidrug resistance characteristics, such as extended-spectrum beta-lactamases (ESBLs). Despite the increase in the incidence of ESBL-producing E. coli infections in sub-Saharan Africa, routine ESBL detection in Ghana is often absent, and molecular data on ESBL genotypes is scarce. Eleven ESBL-producing E. coli recovered from mid-stream urine samples were subjected to antimicrobial susceptibility testing and whole-genome sequence analyses. All isolates exhibited multidrug resistance, demonstrating phenotypic resistance to third-generation cephalosporins, such as cefotaxime, ceftazidime, and cefpodoxime. Three isolates demonstrated resistance to norfloxacin (a fluoroquinolone), and one isolate demonstrated intermediate resistance to ertapenem (a carbapenem). Analysis of the draft genomes identified multiple antimicrobial resistance genes including ESBL genotypes blaTEM-1B/TEM-190 (6/11 and 1/11, respectively), blaCTX-M-15/CTX-M-3 (7/11 and 1/11) and blaOXA-1/OXA-181 (3/11 and 1/11). The strains belong to 10 different serotypes and 10 different multilocus sequence types. This study provides information on phenotypic resistance in 11 ESBL E. coli from Ghana and AMR genotypes within their genomes.

4.
Microbiol Resour Announc ; 12(1): e0089322, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36453948

RESUMO

Whole-genome sequence data for clinically relevant Gram-negative bacteria from the African continent are scarce. In this report, we present the draft genome sequence data and antibiograms of four species, namely, Kerstersia gyiorum, Providencia vermicola, Providencia stuartii, and Alcaligenes faecalis, that were recovered from human soft tissue biopsy samples.

5.
Front Microbiol ; 14: 1254896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192291

RESUMO

Introduction: Enterococcus spp. have gradually evolved from commensals to causing life-threatening hospital-acquired infections globally due to their inherent antimicrobial resistance ability and virulence potential. Enterococcus spp. recovered from livestock and raw meat samples were characterized using antimicrobial susceptibility testing and whole-genome sequencing. Materials and methods: Isolates were confirmed using the MALDI-ToF mass spectrometer, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Whole genome sequencing was performed on isolates resistant to two or more antibiotics. Bioinformatics analysis was performed to determine sequence types, resistance and virulence gene content and evolutionary relationships between isolates from meat and livestock samples, and other enterococci genomes curated by PATRIC. eBURST analysis was used to assign genomes to clonal complexes. Results: Enterococcus spp. were predominantly E. faecalis (96/236; 41%) and E. faecium (89/236; 38%). Overall, isolates showed resistance to erythromycin (78/236; 33%), tetracycline (71/236; 30%), ciprofloxacin (20/236; 8%), chloramphenicol (12/236; 5%), linezolid (7/236; 3%), ampicillin (4/236; 2%) and vancomycin (1/236, 0.4%). Resistance to two or more antimicrobial agents was detected among 17% (n = 40) Enterococcus spp. Resistance genes for streptogramins [lsa(A), lsa(E), msr(C)], aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia, aac(6')-aph(2″), str], amphenicol [cat], macrolides [erm(B), erm(T), msr(C)], tetracyclines [tet(M), tet(L), tet(S)] and lincosamides [lsa(A), lsa(E), lnu(B)] were detected among the isolates. Genes for biofilm formation, adhesins, sex pheromones, cytolysins, hyaluronidase, oxidative stress resistance, quorum-sensing and anti-phagocytic activity were also identified. Potential plasmids with replicon sequences (rep1, rep2, repUS43, repUS47, rep9a, rep9b) and other mobile genetic elements (Tn917, cn_5536_ISEnfa1, Tn6009, ISEnfa1, ISEfa10) were detected. Clinically relevant E. faecium ST32 and ST416 clones were identified in meat samples. Conclusion: The occurrence of antimicrobial-resistant Enterococcus spp. in livestock and raw meat samples, carrying multiple resistance and virulence genes, including known clones associated with hospital-acquired infections, underscores the critical need for employing robust tools like whole genome sequencing. Such tools provide detailed data essential for ongoing surveillance efforts aimed at addressing the challenge of antimicrobial resistance with a focus on one health.

6.
Antibiotics (Basel) ; 12(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37370334

RESUMO

Beta-lactamase (ß-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum ß-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. ß-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). ß-lactamase genes such as AmpCs ((blaFOX-M (64%) and blaDHA-M and blaEDC-M (27%)), ESBLs ((blaCTX-M (81%), other ß-lactamase genes blaTEM (73%) and blaSHV (27%)) and carbapenemase ((blaOXA-48 (60%) and blaNDM and blaKPC (40%)) were also detected. One K. pneumoniae co-harbored AmpC (blaFOX-M and blaEBC-M) and carbapenemase (blaKPC and blaOXA-48) genes. blaOXA-48 gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.

7.
PLoS One ; 17(12): e0279715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584159

RESUMO

AIM: To describe the occurrence of carbapenem resistance among multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae isolated from clinical specimens in Accra using phenotypic and genotypic methods. METHODOLOGY: The study was cross-sectional, involving 144 clinical MDR E. coli and K. pneumoniae isolates recovered from the Central Laboratory of the Korle Bu Teaching Hospital (KBTH). The isolates were re-cultured bacteriologically, identified using standard biochemical tests, and subjected to antibiotic susceptibility testing using the Kirby-Bauer method. Carbapenem resistance was determined based on imipenem, meropenem, and ertapenem zones of inhibition, as well as minimum inhibitory concentrations (MICs). Carbapenemase production was determined phenotypically by modified Hodge test (MHT) and modified carbapenem inactivation method (mCIM), and genotypically with multiplex PCR targeting the blaKPC, blaIMP, blaNDM, blaVIM, and blaOXA-48 genes. RESULTS: Of the 144 MDR isolates, 69.4% were E. coli, and 30.6% were K. pneumoniae. The distribution of antimicrobial resistance rates among them was ampicillin (97.2%), cefuroxime (93.1%), sulfamethoxazole-trimethoprim (86.8%), tetracycline (85.4%), cefotaxime and cefpodoxime (77.1% each), amoxicillin-clavulanate (75%), ceftriaxone (73.6%), ciprofloxacin (70.8%), levofloxacin (66.0%), cefepime (65.3%), ceftazidime (64.6%), gentamicin (48.6), piperacillin-tazobactam (40.3%), cefoxitin (14.6%), amikacin (13.9%), ertapenem and meropenem (5.6% each), and imipenem (2.8%). In total, 5.6% (8/144) of them were carbapenem-resistant (carbapenem MIC range = 0.094-32.0 µg/ml), with 75% (6/8) of these testing positive by the phenotypic tests and 62.5% (5/8) by the genotypic test (of which 80% [4/5] carried blaOXA-48 and 20% (1/5) blaNDM). The blaVIM, blaIMP, and blaKPC genes were not detected. CONCLUSION: Although the rates of antibiotic resistance among the isolates were high, the prevalence of carbapenemase producers was low. The finding of blaOXA-48 and blaNDM warrants upscaling of antimicrobial resistance surveillance programmes and fortification of infection prevention and control programmes in the country.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , Meropeném , Ertapenem , Escherichia coli , Gana/epidemiologia , Estudos Transversais , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Imipenem/farmacologia , Testes de Sensibilidade Microbiana
8.
Pathogens ; 10(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673230

RESUMO

Staphylococcus aureus (S. aureus) is a common cause of surgical site infections (SSIs) globally. Data on the occurrence of methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) among patients with surgical site infections (SSIs) in sub-Saharan African are scarce. We characterized S. aureus from SSIs in Ghana using molecular methods and antimicrobial susceptibility testing (AST). Wound swabs or aspirate samples were collected from subjects with SSIs. S. aureus was identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS); AST was performed by Kirby-Bauer disk diffusion, and results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Detection of spa, mecA, and pvl genes was performed by polymerase chain reaction (PCR). Whole-genome sequencing (WGS) was done using the Illumina MiSeq platform. Samples were collected from 112 subjects, with 13 S. aureus isolates recovered. Of these, 92% were sensitive to co-trimoxazole, 77% to clindamycin, and 54% to erythromycin. Multi-drug resistance was detected in 5 (38%) isolates. The four mecA gene-positive MRSA isolates detected belonged to ST152 (n = 3) and ST5 (n = 1). In total, 62% of the isolates were positive for the Panton-Valentine leukocidin (pvl) toxin gene. This study reports, for the first time, a pvl-positive ST152-t355 MRSA clone from SSIs in Ghana. The occurrence of multi-drug-resistant S. aureus epidemic clones suggests that continuous surveillance is required to monitor the spread and resistance trends of S. aureus in hospital settings in the country.

9.
J Glob Antimicrob Resist ; 22: 527-532, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32439567

RESUMO

OBJECTIVE: Epidemic methicillin-resistant Staphylococcus aureus (MRSA) clones have been described in Ghana, but so far, no typical livestock-associated MRSA isolates (CC398) have been found. In this study we provide baseline information on antimicrobial resistance, population structure, and virulence gene content of S. aureus isolates from livestock and farm attendants. METHODS: Nasal samples were collected from cattle, pigs, goats, sheep, and farm attendants from three farms. Staphylococcus aureus was identified by matrix-assisted laser desorption/ionisation time-of-flight and antimicrobial susceptibility testing was performed using VITEK II (Biomerieux, Marcy l'Etoile, France) and interpreted according to EUCAST guidelines. Whole-genome sequencing was performed using the Illumina, San Diego, CA, USA MiSeq Platform. RESULTS: In total, 401 nasal swab samples were obtained from 57 farm attendants, 208 pigs, 30 goats, 26 sheep, and 80 cattle. The S. aureus isolates (n = 25) recovered (farm attendants: n = 10; pigs: n = 8; and goats: n = 7) were frequently resistant to penicillin (68%), tetracycline (44%), and ciprofloxacin (32%); two human isolates were MRSA. Twelve isolates (48%) were multidrug resistant (MDR) (>3 classes). Genome sequencing of the isolates revealed ST152-t355, ST9-t1430, and ST133-t8662 as dominant clones among farm attendants, pigs, and goats, respectively. The two MRSA isolates detected belonged to ST8-t334 and ST152-t355. The scn and sak genes associated with human-adaption were detected in 10 isolates; 9 from humans and 1 from a goat. Typing results provided evidence of a single potential transmission event (t861, PVL-, scn+). CONCLUSION: No MRSA was detected among livestock, perhaps because of low intensive farming; however, the relatively high prevalence of MDR isolates may be a result of inappropriate antibiotic usage in Ghanaian livestock production.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Bovinos , Fazendas , França , Gana/epidemiologia , Gado , Staphylococcus aureus Resistente à Meticilina/genética , Ovinos , Staphylococcus aureus , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA