Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Plant Physiol ; 189(2): 922-933, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35201346

RESUMO

Plants perceive volatiles emitted from herbivore-damaged neighboring plants to urgently adapt or prime their defense responses to prepare for forthcoming herbivores. Mechanistically, these volatiles can induce epigenetic regulation based on histone modifications that alter the transcriptional status of defense genes, but little is known about the underlying mechanisms. To understand the roles of such epigenetic regulation of plant volatile signaling, we explored the response of Arabidopsis (Arabidopsis thaliana) plants to the volatile ß-ocimene. Defense traits of Arabidopsis plants toward larvae of Spodoptera litura were induced in response to ß-ocimene, through enriched histone acetylation and elevated transcriptional levels of defense gene regulators, including ethylene response factor genes (ERF8 and ERF104) in leaves. The enhanced defense ability of the plants was maintained for 5 d but not over 10 d after exposure to ß-ocimene, and this coincided with elevated expression of those ERFs in their leaves. An array of histone acetyltransferases, including HAC1, HAC5, and HAM1, were responsible for the induction and maintenance of the anti-herbivore property. HDA6, a histone deacetylase, played a role in the reverse histone remodeling. Collectively, our findings illuminate the role of epigenetic regulation in plant volatile signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Compostos Orgânicos Voláteis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Redutases/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Herbivoria , Histona Desacetilases/metabolismo , Histonas/metabolismo , Plantas/metabolismo , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/metabolismo
2.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34476681

RESUMO

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Assuntos
Oryza , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
3.
Biol Lett ; 18(5): 20210629, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506238

RESUMO

One of the characteristic aspects of odour sensing in humans is the activation of olfactory receptors in a slightly different manner in response to different enantiomers. Here, we focused on whether plants showed enantiomer-specific response similar to that in humans. We exposed Arabidopsis seedlings to methanol (control) and (+)- or (-)-borneol, and found that only (+)-borneol reduced the root length. Furthermore, the root-tip width was more increased upon (+)-borneol exposure than upon (-)-borneol exposure. In addition, root-hair formation was observed near the root tip in response to (+)-borneol. Auxin signalling was strongly reduced in the root tip following exposure to (+)-borneol, but was detected following exposure to (-)-borneol and methanol. Similarly, in the root tip, the activity of cyclin B1:1 was detected on exposure to (-)-borneol and methanol, but not on exposure to (+)-borneol, indicating that (+)-borneol inhibits the meristematic activity in the root. These results partially explain the (+)-borneol-specific reduction in the root length of Arabidopsis. Our results indicate the presence of a sensing system specific for (+)-borneol in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Canfanos , Humanos , Ácidos Indolacéticos/farmacologia , Meristema/fisiologia , Metanol , Raízes de Plantas/fisiologia
4.
Planta ; 249(1): 235-249, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30478473

RESUMO

MAIN CONCLUSION: Transgenic tobacco plants overexpressing the monoterpene alcohol geraniol synthase exhibit hypersensitivity to thermal stress, possibly due to suppressed sugar metabolism and transcriptional regulation of genes involved in thermal stress tolerance. Monoterpene alcohols function in plant survival strategies, but they may cause self-toxicity to plants due to their hydrophobic and highly reactive properties. To explore the role of these compounds in plant stress responses, we assessed transgenic tobacco plants overexpressing the monoterpene alcohol geraniol synthase (GES plants). Growth, morphology and photosynthetic efficiency of GES plants were not significantly different from those of control plants (wild-type and GUS-transformed plants). While GES plants' direct defenses against herbivores or pathogens were similar to those of control plants, their indirect defense (i.e., attracting herbivore enemy Nesidiocoris tenuis) was stronger compared to that of control plants. However, GES plants were susceptible to cold stress and even more susceptible to extreme heat stress (50 °C), as shown by decreased levels of sugar metabolites, invertase activity and its products (Glc and Fru), and leaf starch granules. Moreover, GES plants showed decreased transcription levels of the WRKY33 transcription factor gene and an aquaporin gene (PIP2). The results of this study show that GES plants exhibit enhanced indirect defense ability against herbivores, but conversely, GES plants exhibit hypersensitivity to heat stress due to suppressed sugar metabolism and gene regulation for thermal stress tolerance.


Assuntos
Nicotiana/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Monoéster Fosfórico Hidrolases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Fatores de Transcrição/genética
5.
New Phytol ; 224(2): 875-885, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30903698

RESUMO

The two-spotted spider mite (Tetranychus urticae) is a plant-sucking arthropod herbivore that feeds on a wide array of cultivated plants. In contrast to the well-characterized classical chewing herbivore salivary elicitors that promote plant defense responses, little is known about sucking herbivores' elicitors. To characterize the sucking herbivore elicitors, we explored putative salivary gland proteins of spider mites by using an Agrobacterium-mediated transient expression system or protein infiltration in damaged bean leaves. Two candidate elicitors (designated as tetranin1 (Tet1) and tetranin2 (Tet2)) triggered early leaf responses (cytosolic calcium influx and membrane depolarization) and increased the transcript abundances of defense genes in the leaves, eventually resulting in reduced survivability of T. urticae on the host leaves as well as induction of indirect plant defenses by attracting predatory mites. Tet1 and/or Tet2 also induced jasmonate, salicylate and abscisic acid biosynthesis. Notably, Tet2-induced signaling cascades were also activated via the generation of reactive oxygen species. The signaling cascades of these two structurally dissimilar elicitors are mostly overlapping but partially distinct and thus they would coordinate the direct and indirect defense responses in host plants under spider mite attack in both shared and distinct manners.


Assuntos
Phaseolus/parasitologia , Doenças das Plantas/parasitologia , Solanum melongena/parasitologia , Tetranychidae/fisiologia , Agrobacterium tumefaciens , Animais , Cálcio , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica , Phaseolus/imunologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Espécies Reativas de Oxigênio , Solanum melongena/imunologia
6.
Plant Physiol ; 178(2): 552-564, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30126866

RESUMO

Green leaf volatiles (GLVs), including six-carbon (C6) aldehydes, alcohols, and esters, are formed when plant tissues are damaged. GLVs play roles in direct plant defense at wound sites, indirect plant defense via the attraction of herbivore predators, and plant-plant communication. GLV components provoke distinctive responses in their target recipients; therefore, the control of GLV composition is important for plants to appropriately manage stress responses. The reduction of C6-aldehydes into C6-alcohols is a key step in the control of GLV composition and also is important to avoid a toxic buildup of C6-aldehydes. However, the molecular mechanisms behind C6-aldehyde reduction remain poorly understood. In this study, we purified an Arabidopsis (Arabidopsis thaliana) NADPH-dependent cinnamaldehyde and hexenal reductase encoded by At4g37980, named here CINNAMALDEHYDE AND HEXENAL REDUCTASE (CHR). CHR T-DNA knockout mutant plants displayed a normal growth phenotype; however, we observed significant suppression of C6-alcohol production following partial mechanical wounding or herbivore infestation. Our data also showed that the parasitic wasp Cotesia vestalis was more attracted to GLVs emitted from herbivore-infested wild-type plants compared with GLVs emitted from chr plants, which corresponded with reduced C6-alcohol levels in the mutant. Moreover, chr plants were more susceptible to exogenous high-dose exposure to (Z)-3-hexenal, as indicated by their markedly lowered photosystem II activity. Our study shows that reductases play significant roles in changing GLV composition and, thus, are important in avoiding toxicity from volatile carbonyls and in the attraction of herbivore predators.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hexobarbital/metabolismo , Oxirredutases/metabolismo , Compostos Orgânicos Voláteis/química , Oxirredutases do Álcool/genética , Álcoois/química , Álcoois/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ésteres/química , Ésteres/metabolismo , Mutação , Oxirredutases/genética , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Compostos Orgânicos Voláteis/metabolismo
7.
J Chem Ecol ; 45(4): 402-409, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30854610

RESUMO

In nature, parasitoid wasps encounter and sometimes show oviposition behavior to nonhost species. However, little is known about the effect of such negative incidences on their subsequent host-searching behavior. We tested this effect in a tritrophic system of maize plants (Zea mays), common armyworms (hosts), tobacco cutworms (nonhosts), and parasitoid wasps, Cotesia kariyai. We used oviposition inexperienced C. kariyai and negative-experienced individuals that had expressed oviposition behavior toward nonhosts on nonhost-infested maize leaves. We first observed the olfactory behavior of C. kariyai to volatiles from host-infested plants or nonhost-infested plants in a wind tunnel. Negative-experienced wasps showed significantly lower rates of taking-off behavior (Step-1), significantly longer duration until landing (Step-2), and lower rates of landing behavior (Step-3) toward nonhost-infested plants than inexperienced wasps. However, the negative-experience did not affect these three steps toward host-infested plants. A negative experience appears to have negatively affected the olfactory responses to nonhost-infested plants. The chemical analyses suggested that the wasps associated (Z)-3-hexenyl acetate, a compound that was emitted more in nonhost-infested plants, with the negative experience, and reduced their response to nonhost-infested plants. Furthermore, we observed that the searching duration of wasps on either nonhost- or host-infested plants (Step-4) was reduced on both plant types after the negative experiences. Therefore, the negative experience in Step-4 would be nonadaptive for wasps on host-infested plants. Our study indicated that the density (i.e., possible encounters) of nonhost species as well as that of host species in the field should be considered when assessing the host-searching behavior of parasitoid wasps.


Assuntos
Interações Hospedeiro-Parasita , Larva/fisiologia , Oviposição , Olfato , Vespas/fisiologia , Animais , Comportamento Animal , Feminino , Lepidópteros/crescimento & desenvolvimento , Folhas de Planta/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Zea mays/metabolismo , Zea mays/parasitologia
9.
Proc Natl Acad Sci U S A ; 111(19): 7144-9, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778218

RESUMO

Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense.


Assuntos
Hexanóis/metabolismo , Odorantes , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Spodoptera/crescimento & desenvolvimento , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Glicosídeos/metabolismo , Herbivoria/fisiologia , Larva/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/metabolismo , Compostos Orgânicos Voláteis/metabolismo
10.
J Chem Ecol ; 42(2): 149-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26757909

RESUMO

Many natural enemies of insects use honeydew as a volatile cue to locate hosts or prey, as an oviposition stimulant, and as an arrestant for foraging. The aphidophagous gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) has predacious larval stages and can be used to control aphid populations, especially in greenhouses. Previous studies have shown that the honeydew, excreted by the aphid Myzus persicae, attracts A. aphidimyza, but the crucial attractants have not been identified. Using an olfactometer, we studied behavioral responses of female A. aphidimyza to volatiles emitted from honeydew excreted by the aphid Aphis gossypii on eggplants. The volatiles attracted female midges and induced oviposition. Moreover, using gas chromatography coupled with mass spectrometry (GC/MS), we identified phenylacetaldehyde as the attractant compound in the honeydew, although it did not induce oviposition in olfactometer experiments.


Assuntos
Afídeos/fisiologia , Dípteros/fisiologia , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Animais , Comportamento Animal , Volatilização
11.
Pest Manag Sci ; 80(2): 426-432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37714819

RESUMO

BACKGROUND: Booklice Liposcelis bostrychophila are frequently found almost everywhere, including private houses and cleanrooms of factories and institutes. They often cause serious hygienic as well as agricultural problems, but a useful trap has not been developed so far. Therefore, an effective way to monitor and capture booklice is required. RESULTS: We here identified a new attractant, 2,3,5,6-tetramethylpyrazine (TMP), which efficiently captured booklice in combination with UV light. When booklice placed at both right and left edges of an assay tray were exposed to light stimulus from the center, test insects gathered at the center. The attraction was stronger with shorter wavelengths than longer ones: 365-nm ultraviolet (UV) light showed the strongest attraction of four tested light wavelengths. We found that cocoa powder attracted booklice weakly but significantly under total darkness. Furthermore, the cocoa smell was confirmed to enhance the attraction to light at all tested wavelengths irrespective of the difference between two brands of cocoa powders. Gas chromatography-mass spectrometry indicated that both cocoa products contain TMP as a major odor compound. Exposure of booklice to TMP significantly enhanced the attraction to UV light: the combined use with TMP almost doubled the attraction compared to the light only. By contrast, TMP homologs, pyrazine and dimethylpyrazines, showed strong repellent activities under UV light exposure. CONCLUSION: TMP enhanced the UV light attraction for booklice while pyrazine and dimethylpyrazines diminished it. Use of these attractant and repellent pyrazine derivatives together with UV light would enable us to develop a practical new way to monitor and capture booklice. © 2023 Society of Chemical Industry.


Assuntos
Repelentes de Insetos , Raios Ultravioleta , Animais , Insetos , Pirazinas/farmacologia , Repelentes de Insetos/farmacologia
12.
Plants (Basel) ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611544

RESUMO

Menthyl ester of valine (MV) has been developed as a plant defense potentiator to induce pest resistance in crops. In this study, we attempted to establish MV hydrochloride (MV-HCl) in lettuce and tomato crops. When MV-HCl solutions were used to treat soil or leaves of potted tomato and lettuce plants, 1 µM MV-HCl solution applied to potted plant soil was most effective in increasing the transcript level of defense genes such as pathogenesis-related 1 (PR1). As a result, leaf damage caused by Spodoptera litura and oviposition by Tetranychus urticae were significantly reduced. In addition, MV-HCl-treated plants showed an increased ability to attract Phytoseiulus persimilis, a predatory mite of T. urticae, when they were attacked by T. urticae. Overall, our findings showed that MV-HCl is likely to be effective in promoting not only direct defense by activating defense genes, but also indirect defense mediated by herbivore-induced plant volatiles. Moreover, based on the results of the sustainability of PR1 expression in tomato plants treated with MV-HCl every 3 days, field trials were conducted and showed a 70% reduction in natural leaf damage. Our results suggest a practical approach to promoting organic tomato and lettuce production using this new plant defense potentiator.

13.
Exp Appl Acarol ; 59(3): 263-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23011105

RESUMO

Plants show defensive responses after exposure to volatiles from neighbouring plants infested by herbivores. When a plant's neighbours host only species of herbivores that do not feed on the plant itself, the plant can conserve energy by maintaining a low defence level. An intriguing question is whether plants respond differently to volatiles from plants infested by herbivores that pose greater or lesser degrees of danger. We examined the secretion of extrafloral nectar (EFN) in lima bean plants exposed to volatiles from cabbage plants infested by common cutworm, two-spotted spider mites, or diamondback moth larvae. Although the first two herbivore species feed on lima bean plants, diamondback moth larvae do not. As a control, lima bean plants were exposed to volatiles from uninfested cabbage plants. Only when exposed to volatiles from cabbage plants infested by spider mites did lima bean plants significantly increase their EFN secretion compared with the control. Increased EFN secretion can function as an indirect defence by supplying the natural enemies of herbivores with an alternative food source. Of the three herbivore species, spider mites were the most likely to move from cabbage plants to lima bean plants and presumably posed the greatest threat. Although chemical analyses showed differences among treatments in volatiles produced by herbivore-infested cabbage plants, which compounds or blends triggered the increased secretion of EFN by lima bean plants remains unclear. Thus, our results show that plants may tune their defence levels according to herbivore risk level.


Assuntos
Brassica/fisiologia , Herbivoria , Mariposas/fisiologia , Phaseolus/fisiologia , Tetranychidae/fisiologia , Animais , Feminino , Larva/fisiologia , Phaseolus/química , Néctar de Plantas/química , Néctar de Plantas/fisiologia , Compostos Orgânicos Voláteis/química
14.
Nat Commun ; 14(1): 677, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755045

RESUMO

Volatiles from herbivore-infested plants function as a chemical warning of future herbivory for neighboring plants. (Z)-3-Hexenol emitted from tomato plants infested by common cutworms is taken up by uninfested plants and converted to (Z)-3-hexenyl ß-vicianoside (HexVic). Here we show that a wild tomato species (Solanum pennellii) shows limited HexVic accumulation compared to a domesticated tomato species (Solanum lycopersicum) after (Z)-3-hexenol exposure. Common cutworms grow better on an introgression line containing an S. pennellii chromosome 11 segment that impairs HexVic accumulation, suggesting that (Z)-3-hexenol diglycosylation is involved in the defense of tomato against herbivory. We finally reveal that HexVic accumulation is genetically associated with a uridine diphosphate-glycosyltransferase (UGT) gene cluster that harbors UGT91R1 on chromosome 11. Biochemical and transgenic analyses of UGT91R1 show that it preferentially catalyzes (Z)-3-hexenyl ß-D-glucopyranoside arabinosylation to produce HexVic in planta.


Assuntos
Solanum lycopersicum , Solanum , Compostos Orgânicos Voláteis , Solanum lycopersicum/genética , Pentosiltransferases , Glicosiltransferases/genética , Compostos Orgânicos Voláteis/análise , Herbivoria
15.
New Phytol ; 193(4): 1009-1021, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22243440

RESUMO

Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-ß-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants.


Assuntos
Alcenos/farmacologia , Magnoliopsida/metabolismo , Magnoliopsida/parasitologia , Ácaros/fisiologia , Tetranychidae/patogenicidade , Monoterpenos Acíclicos , Alcenos/metabolismo , Animais , Feminino , Flores/metabolismo , Herbivoria , Interações Hospedeiro-Parasita , Magnoliopsida/genética , Infestações por Ácaros , Ácaros/efeitos dos fármacos , Feromônios/farmacologia , Plantas Geneticamente Modificadas , Comportamento Predatório/fisiologia , Olfato , Tetranychidae/fisiologia , Compostos Orgânicos Voláteis/metabolismo
16.
Mol Ecol ; 21(22): 5624-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23043221

RESUMO

Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent.


Assuntos
Phaseolus/metabolismo , Comportamento Predatório/fisiologia , Temperatura , Tetranychidae/fisiologia , Animais , Feminino , Herbivoria , Ácaros/genética , Ácaros/fisiologia , Oviposição , Óvulo , Feromônios/biossíntese , Interferência de RNA , Tetranychidae/genética , Transcriptoma , Compostos Orgânicos Voláteis/metabolismo
17.
Plant J ; 61(1): 46-57, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19891707

RESUMO

A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.


Assuntos
Aldeído Liases/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Hemípteros/fisiologia , Oryza/imunologia , Oryza/microbiologia , Xanthomonas/patogenicidade , Aldeído Liases/genética , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/metabolismo , Oryza/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Plant Cell Physiol ; 52(3): 588-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21296762

RESUMO

Plants emit specific blends of volatile organic compounds (VOCs) in response to mechanical wounding. Such induced VOCs have been shown to mediate in plant and interplant communication, yet little is known about the time- and dose-response relationships in VOC-mediated communications. Here, we employed young seedlings of Chrysanthemum cinerariaefolium to examine the effects of volatiles emitted by artificially damaged seedlings on the biosynthesis of the natural insecticides pyrethrins in intact conspecific plants. Wounded leaves emitted (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)-3-hexen-1-yl acetate and (E)-ß-farnesene as dominant wound-induced VOCs. Exposing intact seedlings to a mixture of these VOCs at concentrations mimicking those emitted from wounded seedlings, as well as placing the intact seedlings next to the wounded seedlings, resulted in enhanced pyrethrin contents in the intact seedlings. Thus we quantified mRNA transcripts of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), chrysanthemyl diphosphate synthase (CPPase), 13-lipoxygenase (13-LOX) and allene oxide synthase (AOS) genes in intact seedlings exposed to the VOC mixture to show that DXS and 13-LOX gene expression reached a maximum at 3 h, whereas CPPase and AOS reached it at 6 h. Interestingly, both increasing and decreasing the VOC mixture concentrations from those observed on injury reduced the expression of DXS, CPPase and AOS genes to the control level. Also, separating the VOC mixture into individual components eliminated the ability to enhance the expression of all the biosynthetic genes examined. This is the first study showing that the wound-induced VOCs function as a blend to control the biosynthesis of second metabolites at specific concentrations.


Assuntos
Chrysanthemum/efeitos dos fármacos , Chrysanthemum/metabolismo , Piretrinas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Chrysanthemum/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Piretrinas/química , Plântula/efeitos dos fármacos , Plântula/metabolismo , Fatores de Tempo
19.
J Chem Ecol ; 37(3): 267-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21331570

RESUMO

Females of the gregarious endoparasitoid Cotesia kariyai were attracted to a blend of volatiles released from corn plants infested with larvae of their host, the common armyworm (Mythimna separata). We investigated the effects of time after the last infestation (1-168 h) on the attractiveness of corn plants infested by host larvae by using a wind tunnel under laboratory conditions. Immediately after the removal of the larvae, parasitoids were attracted more to plants that had been infested with the larvae than to intact plants (control). This attractiveness gradually decreased with time after the last infestation. The attractiveness of the infested plants was significantly higher than that of intact plants when the time after the last infestation was within 1 day. Fifteen herbivore-induced volatiles were recorded in the headspace of infested corn plants irrespective of time. The amounts of some compounds including (Z)-3-hexen-1-yl acetate, which have already been reported to attract C. kariyai, correlated with the attractiveness. The ecological meaning of the duration of production of C. kariyai attractants is discussed.


Assuntos
Lepidópteros/fisiologia , Vespas/fisiologia , Zea mays/fisiologia , Acetatos/metabolismo , Animais , Comportamento Animal , Feminino , Interações Hospedeiro-Parasita , Larva/fisiologia , Lepidópteros/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Fatores de Tempo , Zea mays/parasitologia
20.
Int J Mol Sci ; 12(6): 3723-39, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747702

RESUMO

Plants are frequently attacked by herbivores and pathogens and therefore have acquired constitutive and induced defenses during the course of their evolution. Here we review recent progress in the study of the early signal transduction pathways in host plants in response to herbivory. The sophisticated signaling network for plant defense responses is elicited and driven by both herbivore-induced factors (e.g., elicitors, effectors, and wounding) and plant signaling (e.g., phytohormone and plant volatiles) in response to arthropod factors. We describe significant findings, illuminating the scenario by providing broad insights into plant signaling involved in several arthropod-host interactions.


Assuntos
Herbivoria , Plantas/metabolismo , Transdução de Sinais , Animais , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA