Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 16(4): 295-298, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923379

RESUMO

We report a computational approach (implemented in MS-DIAL 3.0; http://prime.psc.riken.jp/) for metabolite structure characterization using fully 13C-labeled and non-labeled plants and LC-MS/MS. Our approach facilitates carbon number determination and metabolite classification for unknown molecules. Applying our method to 31 tissues from 12 plant species, we assigned 1,092 structures and 344 formulae to 3,604 carbon-determined metabolite ions, 69 of which were found to represent structures currently not listed in metabolome databases.


Assuntos
Biologia Computacional/métodos , Genes de Plantas , Metaboloma , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Isótopos de Carbono , Cromatografia Líquida , Bases de Dados Factuais , Marcação por Isótopo , Espectrometria de Massas , Metabolômica , Folhas de Planta , Raízes de Plantas , Caules de Planta , Software , Especificidade da Espécie , Espectrometria de Massas em Tandem
2.
Nat Methods ; 16(5): 446, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30992571

RESUMO

In the originally published Supplementary Information for this paper, the files presented as Supplementary Tables 3, 4, and 7 were duplicates of Supplementary Tables 5, 6, and 9, respectively. All Supplementary Table files are now correct online.

3.
Front Plant Sci ; 12: 661274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276724

RESUMO

European hazelnut (Corylus avellana) is a diploid (2n = 22), monecious and wind-pollinated species, extensively cultivated for its nuts. Turkey is the world-leading producer of hazelnut, supplying 70-80% of the world's export capacity. Hazelnut is mostly grown in the Black Sea Region, and maintained largely through clonal propagation. Understanding the genetic variation between hazelnut varieties, and defining variety-specific and disease resistance-associated alleles, would facilitate hazelnut breeding in Turkey. Widely grown varieties 'Karafindik' (2), 'Sarifindik' (5), and 'Yomra' (2) were collected from Akçakoca in the west, while 'Tombul' (8), 'Çakildak' (3), 'Mincane' (2), 'Allahverdi' (2), 'Sivri' (4), and 'Palaz' (5) were collected from Ordu and Giresun provinces in the east (numbers in parentheses indicate sample sizes for each variety). Powdery mildew resistant and susceptible hazelnut genotypes were collected from the field gene bank and heavily infected orchards in Giresun. Every individual was subjected to double digest restriction enzyme-associated DNA sequencing (ddRAD-seq) and a RADtag library was created. RADtags were aligned to the 'Tombul' reference genome, and Stacks software used to identify polymorphisms. 101 private and six common alleles from nine hazelnut varieties, four private from resistants and only one from susceptible were identified for diagnosis of either a certain hazelnut variety or powdery mildew resistance. Phylogenetic analysis and population structure calculations indicated that 'Mincane', 'Sarifindik', 'Tombul', 'Çakildak', and 'Palaz' were genetically close to each other; however, individuals within every varietal group were found in different sub-populations. Our findings indicated that years of clonal propagation of some preferred varieties across the Black Sea Region has resulted in admixed sub-populations and great genetic diversity within each variety. This impedes the development of a true breeding variety. For example, 'Tombul' is the most favored Turkish variety because of its high quality nuts, but an elite 'Tombul' line does not yet exist. This situation continues due to the lack of a breed protection program for commercially valuable hazelnut varieties. This study provides molecular markers suitable for establishing such a program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA