Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 9(10): 973-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941364

RESUMO

Targeted DNA double-strand breaks introduced by rare-cleaving designer endonucleases can be harnessed for gene disruption applications by engaging mutagenic nonhomologous end-joining DNA repair pathways. However, endonuclease-mediated DNA breaks are often subject to precise repair, which limits the efficiency of targeted genome editing. To address this issue, we coupled designer endonucleases to DNA end-processing enzymes to drive mutagenic break resolution, achieving up to 25-fold enhancements in gene disruption rates.


Assuntos
Quebras de DNA de Cadeia Dupla , Endonucleases/fisiologia , Animais , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Exodesoxirribonucleases/fisiologia , Células HEK293 , Humanos , Camundongos , Fosfoproteínas/fisiologia , Receptores CCR5/fisiologia
2.
Nature ; 456(7218): 107-11, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987743

RESUMO

Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.


Assuntos
Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA/genética , DNA/metabolismo , Engenharia Genética , Xeroderma Pigmentoso/genética , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Cristalografia por Raios X , DNA/química , Reparo do DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/toxicidade , Estabilidade Enzimática , Humanos , Modelos Moleculares , Fosforilação , Multimerização Proteica , Especificidade por Substrato
3.
Nucleic Acids Res ; 40(13): 6367-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467209

RESUMO

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.


Assuntos
Efeitos da Posição Cromossômica , Enzimas de Restrição do DNA/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Marcação de Genes , Engenharia Genética , Genoma Humano , Humanos , Mutagênese
4.
Nucleic Acids Res ; 39(17): 7610-9, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21715375

RESUMO

Gene targeting can be achieved with lentiviral vectors delivering donor sequences along with a nuclease that creates a locus-specific double-strand break (DSB). Therapeutic applications of this system would require an appropriate control of the amount of endonuclease delivered to the target cells, and potentially toxic sustained expression must be avoided. Here, we show that the nuclease can be transferred into cells as a protein associated with a lentiviral vector particle. I-SceI, a prototypic meganuclease from yeast, was incorporated into the virions as a fusion with Vpr, an HIV accessory protein. Integration-deficient lentiviral vectors containing the donor sequences and the I-SceI fusion protein were tested in reporter cells in which targeting events were scored by the repair of a puromycin resistance gene. Molecular analysis of the targeted locus indicated a 2-fold higher frequency of the expected recombination event when the nuclease was delivered as a protein rather than encoded by a separate vector. In both systems, a proportion of clones displayed multiple integrated copies of the donor sequences, either as tandems at the targeted locus or at unrelated loci. These integration patterns were dependent upon the mode of meganuclease delivery, suggesting distinct recombination processes.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Marcação de Genes/métodos , Vetores Genéticos , Lentivirus/genética , Animais , Células CHO , Cricetinae , Cricetulus , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Loci Gênicos , Células HEK293 , Humanos , Recombinação Genética , Vírion/genética
5.
Nucleic Acids Res ; 39(14): 6124-36, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21482539

RESUMO

Homing endonucleases (HE) have emerged as precise tools for achieving gene targeting events. Redesigned HEs with tailored specificities can be used to cleave new sequences, thereby considerably expanding the number of targetable genes and loci. With HEs, as well as with other protein scaffolds, context dependence of DNA/protein interaction patterns remains one of the major limitations for rational engineering of new DNA binders. Previous studies have shown strong crosstalk between different residues and regions of the DNA binding interface. To investigate this phenomenon, we systematically combined mutations from three groups of amino acids in the DNA binding regions of the I-CreI HE. Our results confirm that important crosstalk occurs throughout this interface in I-CreI. Detailed analysis of success rates identified a nearest-neighbour effect, with a more pronounced level of dependence between adjacent regions. Taken together, these data suggest that combinatorial engineering does not necessarily require the identification of separable functional or structural regions, and that groups of amino acids provide acceptable building blocks that can be assembled, overcoming the context dependency of the DNA binding interface. Furthermore, the present work describes a sequential method to engineer tailored HEs, wherein three contiguous regions are individually mutated and assembled to create HEs with engineered specificity.


Assuntos
Enzimas de Restrição do DNA/química , Proteínas de Ligação a DNA/química , Sítios de Ligação , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mutação , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Especificidade por Substrato
6.
Nucleic Acids Res ; 39(2): 729-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20846960

RESUMO

Homing endonucleases recognize long target DNA sequences generating an accurate double-strand break that promotes gene targeting through homologous recombination. We have modified the homodimeric I-CreI endonuclease through protein engineering to target a specific DNA sequence within the human RAG1 gene. Mutations in RAG1 produce severe combined immunodeficiency (SCID), a monogenic disease leading to defective immune response in the individuals, leaving them vulnerable to infectious diseases. The structures of two engineered heterodimeric variants and one single-chain variant of I-CreI, in complex with a 24-bp oligonucleotide of the human RAG1 gene sequence, show how the DNA binding is achieved through interactions in the major groove. In addition, the introduction of the G19S mutation in the neighborhood of the catalytic site lowers the reaction energy barrier for DNA cleavage without compromising DNA recognition. Gene-targeting experiments in human cell lines show that the designed single-chain molecule preserves its in vivo activity with higher specificity, further enhanced by the G19S mutation. This is the first time that an engineered meganuclease variant targets the human RAG1 locus by stimulating homologous recombination in human cell lines up to 265 bp away from the cleavage site. Our analysis illustrates the key features for à la carte procedure in protein-DNA recognition design, opening new possibilities for SCID patients whose illness can be treated ex vivo.


Assuntos
Reparo do DNA , Enzimas de Restrição do DNA/química , Genes RAG-1 , Linhagem Celular , DNA/química , Clivagem do DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Marcação de Genes , Loci Gênicos , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Engenharia de Proteínas , Recombinação Genética
7.
Mol Ther ; 19(4): 694-702, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21224832

RESUMO

Herpes simplex virus type 1 (HSV1) is a major health problem. As for most viral diseases, current antiviral treatments are based on the inhibition of viral replication once it has already started. As a consequence, they impair neither the viral cycle at its early stages nor the latent form of the virus, and thus cannot be considered as real preventive treatments. Latent HSV1 virus could be addressed by rare cutting endonucleases, such as meganucleases. With the aim of a proof of concept study, we generated several meganucleases recognizing HSV1 sequences, and assessed their antiviral activity in cultured cells. We demonstrate that expression of these proteins in African green monkey kidney fibroblast (COS-7) and BSR cells inhibits infection by HSV1, at low and moderate multiplicities of infection (MOIs), inducing a significant reduction of the viral load. Furthermore, the remaining viral genomes display a high rate of mutation (up to 16%) at the meganuclease cleavage site, consistent with a mechanism of action based on the cleavage of the viral genome. This specific mechanism of action qualifies meganucleases as an alternative class of antiviral agent, with the potential to address replicative as well as latent DNA viral forms.


Assuntos
Desoxirribonucleases/metabolismo , Infecções por Herpesviridae/prevenção & controle , Animais , Western Blotting , Células CHO , Células COS , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Desoxirribonucleases/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Humanos
8.
Nucleic Acids Res ; 38(6): 2006-18, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20026587

RESUMO

Homing endonucleases have become valuable tools for genome engineering. Their sequence recognition repertoires can be expanded by modifying their specificities or by creating chimeric proteins through domain swapping between two subdomains of different homing endonucleases. Here, we show that these two approaches can be combined to create engineered meganucleases with new specificities. We demonstrate the modularity of the chimeric DmoCre meganuclease previously described, by successfully assembling mutants with locally altered specificities affecting both I-DmoI and I-CreI subdomains in order to create active meganucleases with altered specificities. Moreover these new engineered DmoCre variants appear highly specific and present a low toxicity level, similar to I-SceI, and can induce efficient homologous recombination events in mammalian cells. The DmoCre based meganucleases can therefore offer new possibilities for various genome engineering applications.


Assuntos
Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Proteínas de Ligação a DNA/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Animais , Células CHO , Sobrevivência Celular , Técnicas de Química Combinatória , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Mutagênese , Mutação , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato/genética
9.
Blood ; 114(17): 3601-9, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19692705

RESUMO

Nonhomologous end-joining DNA repair factors, including Artemis, are all required for the repair of DNA double-strand breaks, which occur during the assembly of the variable antigen recognition domain of B-cell receptors and T-cell receptors through the V(D)J recombination. Mature B cells further shape their immunoglobulin repertoire on antigen recognition notably through the class switch recombination (CSR) process. To analyze the role of Artemis during CSR, we developed a mature B-cell-specific Artemis conditional knockout mouse to bypass the absence of B cells caused by its early deficit. Although CSR is not overwhelmingly affected in these mice, class switching to certain isotypes is clearly reduced both in vitro on B-cell activation and in vivo after keyhole limpet hemocyanin immunization. The reduced CSR in Artemis-deficient B cells is accompanied by the increase in DNA microhomology usage at CSR junctions, the imprint of an alternative DNA end-joining pathway. Likewise, significant increase in DNA microhomology usage is the signature of CSR junctions obtained from human RS-SCID patients harboring hypomorphic Artemis mutations. Altogether, this indicates that Artemis participates in the repair of a subset of DNA breaks generated during CSR.


Assuntos
Quebras de DNA de Cadeia Dupla , Imunoglobulina A/genética , Switching de Imunoglobulina/genética , Imunoglobulina G/genética , Proteínas Nucleares/fisiologia , Recombinação Genética , Imunodeficiência Combinada Severa/genética , Adulto , Animais , Linfócitos B/metabolismo , Sequência de Bases , Western Blotting , Criança , Endonucleases , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Hemocianinas/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Dados de Sequência Molecular , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
10.
Nucleic Acids Res ; 37(16): 5405-19, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19584299

RESUMO

Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.


Assuntos
Enzimas de Restrição do DNA/genética , Marcação de Genes , Genes RAG-1 , Animais , Células CHO , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Dimerização , Engenharia Genética , Humanos , Recombinação Genética , Imunodeficiência Combinada Severa/genética
11.
Proc Natl Acad Sci U S A ; 105(44): 16888-93, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18974222

RESUMO

Homing endonucleases, also known as meganucleases, are sequence-specific enzymes with large DNA recognition sites. These enzymes can be used to induce efficient homologous gene targeting in cells and plants, opening perspectives for genome engineering with applications in a wide series of fields, ranging from biotechnology to gene therapy. Here, we report the crystal structures at 2.0 and 2.1 A resolution of the I-DmoI meganuclease in complex with its substrate DNA before and after cleavage, providing snapshots of the catalytic process. Our study suggests that I-DmoI requires only 2 cations instead of 3 for DNA cleavage. The structure sheds light onto the basis of DNA binding, indicating key residues responsible for nonpalindromic target DNA recognition. In silico and in vivo analysis of the I-DmoI DNA cleavage specificity suggests that despite the relatively few protein-base contacts, I-DmoI is highly specific when compared with other meganucleases. Our data open the door toward the generation of custom endonucleases for targeted genome engineering using the monomeric I-DmoI scaffold.


Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Engenharia de Proteínas/métodos , Especificidade por Substrato
12.
Nucleic Acids Res ; 36(7): 2163-73, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18276641

RESUMO

Meganucleases cut long (>12 bp) unique sequences in genomes and can be used to induce targeted genome engineering by homologous recombination in the vicinity of their cleavage site. However, the use of natural meganucleases is limited by the repertoire of their target sequences, and considerable efforts have been made to engineer redesigned meganucleases cleaving chosen targets. Homodimeric meganucleases such as I-CreI have provided a scaffold, but can only be modified to recognize new quasi-palindromic DNA sequences, limiting their general applicability. Other groups have used dimer-interface redesign and peptide linkage to control heterodimerization between related meganucleases such as I-DmoI and I-CreI, but until now there has been no application of this aimed specifically at the scaffolds from existing combinatorial libraries of I-CreI. Here, we show that engineering meganucleases to form obligate heterodimers results in functional endonucleases that cut non-palindromic sequences. The protein design algorithm (FoldX v2.7) was used to design specific heterodimer interfaces between two meganuclease monomers, which were themselves engineered to recognize different DNA sequences. The new monomers favour functional heterodimer formation and prevent homodimer site recognition. This design massively increases the potential repertoire of DNA sequences that can be specifically targeted by designed I-CreI meganucleases and opens the way to safer targeted genome engineering.


Assuntos
Algoritmos , Enzimas de Restrição do DNA/química , Engenharia de Proteínas/métodos , Sequência de Bases , DNA/química , DNA/metabolismo , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Dimerização , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato
13.
Nucleic Acids Res ; 35(10): 3262-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17452357

RESUMO

Meganucleases are sequence-specific endonucleases with large cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These enzymes open novel perspectives for genome engineering in a wide range of fields, including gene therapy. A new crystal structure of the I-CreI dimer without DNA has allowed the comparison with the DNA-bound protein. The C-terminal loop displays a different conformation, which suggests its implication in DNA binding. A site-directed mutagenesis study in this region demonstrates that whereas the C-terminal helix is negligible for DNA binding, the final C-terminal loop is essential in DNA binding and cleavage. We have identified two regions that comprise the Ser138-Lys139 and Lys142-Thr143 pairs whose double mutation affect DNA binding in vitro and abolish cleavage in vivo. However, the mutation of only one residue in these sites allows DNA binding in vitro and cleavage in vivo. These findings demonstrate that the C-terminal loop of I-CreI endonuclease plays a fundamental role in its catalytic mechanism and suggest this novel site as a region to take into account for engineering new endonucleases with tailored specificity.


Assuntos
Enzimas de Restrição do DNA/química , DNA/química , Sítios de Ligação , DNA/metabolismo , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Dimerização , Lisina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Serina/química , Especificidade por Substrato , Treonina/química
14.
J Mol Biol ; 371(1): 49-65, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17561112

RESUMO

Meganucleases are sequence-specific endonucleases which recognize large (>12 bp) target sites in living cells and can stimulate homologous gene targeting by a 1000-fold factor at the cleaved locus. We have recently described a combinatorial approach to redesign the I-CreI meganuclease DNA-binding interface, in order to target chosen sequences. However, engineering was limited to the protein regions shown to directly interact with DNA in a base-specific manner. Here, we take advantage of I-CreI natural degeneracy, and of additional refinement steps to extend the number of sequences that can be efficiently cleaved. We searched the sequence of the human XPC gene, involved in the disease Xeroderma Pigmentosum (XP), for potential targets, and chose three sequences that differed from the I-CreI cleavage site over their entire length, including the central four base-pairs, whose role in the DNA/protein recognition and cleavage steps remains very elusive. Two out of these targets could be cleaved by engineered I-CreI derivatives, and we could improve the activity of weak novel meganucleases, to eventually match the activity of the parental I-CreI scaffold. The novel proteins maintain a narrow cleavage pattern for cognate targets, showing that the extensive redesign of the I-CreI protein was not made at the expense of its specificity. Finally, we used a chromosomal reporter system in CHO-K1 cells to compare the gene targeting frequencies induced by natural and engineered meganucleases. Tailored I-CreI derivatives cleaving sequences from the XPC gene were found to induce high levels of gene targeting, similar to the I-CreI scaffold or the I-SceI "gold standard". This is the first time an engineered homing endonuclease has been used to modify a chromosomal locus.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Marcação de Genes , Engenharia de Proteínas , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Genes Reporter , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Methods Mol Biol ; 435: 31-45, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370066

RESUMO

Cell line development for protein production or for the screening of drug targets requires the reproducible and stable expression of transgenes. Such cell lines can be engineered with meganucleases, sequence-specific endonucleases that recognize large DNA target sites. These proteins are powerful tools for genome engineering because they can increase homologous gene targeting by several orders of magnitude in the vicinity of their cleavage site. Here, we describe in details the use of meganucleases for gene targeting in Chinese hamster ovary-K1 cells, with a special emphasis on a gene insertion procedure using a promoter-less marker gene for selection. We have also monitored the expression of genes inserted by meganucleases-induced recombination, and show that expression is reproducible among different targeted clones, and stable over a 4 mo period. These experiments were conducted with the natural yeast I-SceI meganuclease, but the general design and process can also be applied to engineered meganucleases.


Assuntos
Linhagem Celular , Desoxirribonucleases de Sítio Específico do Tipo II , Marcação de Genes/métodos , Animais , Southern Blotting , Antígenos CD4/genética , Células CHO , Cricetinae , Cricetulus , Resistência a Medicamentos/genética , Expressão Gênica , Genes Reporter , Engenharia Genética/métodos , Mutagênese Insercional , Sondas de Oligonucleotídeos , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Transfecção , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
16.
Nucleic Acids Res ; 34(22): e149, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17130168

RESUMO

Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.


Assuntos
Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Engenharia de Proteínas/métodos , DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Interpretação Estatística de Dados , Dimerização , Genes RAG-1 , Humanos , Mutação , Nucleotídeos/metabolismo , Biblioteca de Peptídeos , Estrutura Terciária de Proteína , Especificidade por Substrato
17.
Curr Gene Ther ; 7(1): 49-66, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17305528

RESUMO

Meganucleases are sequence-specific endonucleases recognizing large (>12 bp) sequence sites and several laboratories have used these proteins to induce highly efficient gene targeting in mammalian cells. The recent development of artificial endonucleases with tailored specificities has opened the door for a wide range of new applications, including therapeutic ones: redesigned endonucleases cleaving chosen sequences could be used to in gene therapy to correct mutated genes or introduce transgenes in chosen loci. Such "targeted" approaches markedly differ from current gene therapy strategies based on the random insertion of a complementing virus-borne transgene. As a consequence, they should bypass the odds of random insertion. Artificial fusion proteins including Zinc-Finger binding domains have provided important proofs of concept, however the toxicity of these proteins is still an issue. Today custom-designed homing endonucleases, the natural meganucleases, could represent an efficient alternative. After a brief description of the origin of the technology, current systems based on redesigned endonucleases will be presented, with a special emphasis on the recent advances in homing endonuclease engineering. Finally, we will discuss the main issues that will need to be addressed in order to bring this promising technology to the patient.


Assuntos
Quebras de DNA de Cadeia Dupla , Enzimas de Restrição do DNA/genética , Marcação de Genes/tendências , Terapia Genética/tendências , Engenharia de Proteínas/métodos , Recombinação Genética , Animais , Reparo do DNA , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Genes RAG-1 , Engenharia Genética , Terapia Genética/efeitos adversos , Humanos , Camundongos , Modelos Moleculares , Estrutura Terciária de Proteína , Dedos de Zinco/genética
18.
J Mol Biol ; 355(3): 443-58, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16310802

RESUMO

The last decade has seen the emergence of a universal method for precise and efficient genome engineering. This method relies on the use of sequence-specific endonucleases such as homing endonucleases. The structures of several of these proteins are known, allowing for site-directed mutagenesis of residues essential for DNA binding. Here, we show that a semi-rational approach can be used to derive hundreds of novel proteins from I-CreI, a homing endonuclease from the LAGLIDADG family. These novel endonucleases display a wide range of cleavage patterns in yeast and mammalian cells that in most cases are highly specific and distinct from I-CreI. Second, rules for protein/DNA interaction can be inferred from statistical analysis. Third, novel endonucleases can be combined to create heterodimeric protein species, thereby greatly enhancing the number of potential targets. These results describe a straightforward approach for engineering novel endonucleases with tailored specificities, while preserving the activity and specificity of natural homing endonucleases, and thereby deliver new tools for genome engineering.


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA/metabolismo , Recombinação Genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Análise por Conglomerados , Cricetinae , Cricetulus , DNA/química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Engenharia de Proteínas , Leveduras/enzimologia , Leveduras/genética
19.
Nucleic Acids Res ; 33(20): e178, 2005 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-16306233

RESUMO

Homing endonucleases, endonucleases capable of recognizing long DNA sequences, have been shown to be a tool of choice for precise and efficient genome engineering. Consequently, the possibility to engineer novel endonucleases with tailored specificities is under strong investigation. In this report, we present a simple and efficient method to select meganucleases from libraries of variants, based on their cleavage properties. The method has the advantage of directly selecting for the ability to induce double-strand break induced homologous recombination in a eukaryotic environment. Model selections demonstrated high levels of enrichments. Moreover, this method compared favorably with phage display for enrichment of active mutants from a mutant library. This approach makes possible the exploration of large sequence spaces and thereby represents a valuable tool for genome engineering.


Assuntos
Enzimas de Restrição do DNA/genética , Engenharia de Proteínas/métodos , Recombinação Genética , Sítios de Ligação , DNA/química , DNA/metabolismo , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Biblioteca Gênica , Genômica , Mutação , Biblioteca de Peptídeos , Plasmídeos , Saccharomyces cerevisiae/genética
20.
Nucleic Acids Res ; 31(11): 2952-62, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12771221

RESUMO

Homologous gene targeting is the ultimate tool for reverse genetics, but its use is often limited by low efficiency. In a number of recent studies, site- specific DNA double-strand breaks (DSBs) have been used to induce efficient gene targeting. Engineering highly specific, dedicated DNA endonucleases is the key to a wider usage of this technology. In this study, we present two novel, chimeric meganucleases, derived from homing endonucleases. The first one is able to induce recombination in yeast and mammalian cells, whereas the second cleaves a novel (chosen) DNA target site. These results are a first step toward the generation of custom endonucleases for the purpose of targeted genome engineering.


Assuntos
Enzimas de Restrição do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Engenharia de Proteínas , Recombinação Genética , Leveduras/genética , Animais , Sequência de Bases , Células COS , DNA/metabolismo , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/química , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Temperatura Alta , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA