Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 290(30): 18343-60, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26037925

RESUMO

Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2. We discovered that homozygous depletion of deoxyhypusine synthase and/or deoxyhypusine hydroxylase causes lethality in adult mice with different penetrance compared with haploinsufficiency. Network-based bioinformatic analysis of proline repeat-rich proteins, which are putative eIF-5A targets, revealed that these proteins are organized in highly connected protein-protein interaction networks. Hypusine-dependent translational control of essential proteins (hubs) and protein complexes inside these networks might explain the lethal phenotype observed after deletion of hypusine-modifying enzymes. Remarkably, our results also demonstrate that the cancer-associated isoform eIF-5A2 is dispensable for normal development and viability. Together, our results provide the first genetic evidence that the hypusine modification in eIF-5A is crucial for homeostasis in mammals. Moreover, these findings highlight functional diversity of the hypusine system compared with lower eukaryotes and indicate eIF-5A2 as a valuable and safe target for therapeutic intervention in cancer.


Assuntos
Lisina/análogos & derivados , Oxigenases de Função Mista/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Homeostase/genética , Humanos , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/metabolismo , Neoplasias/genética , Neoplasias/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional
2.
Mol Cell Proteomics ; 11(11): 1289-305, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22888148

RESUMO

Hypusine modification of eukaryotic initiation factor 5A (eIF-5A) represents a unique and highly specific post-translational modification with regulatory functions in cancer, diabetes, and infectious diseases. However, the specific cellular pathways that are influenced by the hypusine modification remain largely unknown. To globally characterize eIF-5A and hypusine-dependent pathways, we used an approach that combines large-scale bioreactor cell culture with tandem affinity purification and mass spectrometry: "bioreactor-TAP-MS/MS." By applying this approach systematically to all four components of the hypusine modification system (eIF-5A1, eIF-5A2, DHS, and DOHH), we identified 248 interacting proteins as components of the cellular hypusine network, with diverse functions including regulation of translation, mRNA processing, DNA replication, and cell cycle regulation. Network analysis of this data set enabled us to provide a comprehensive overview of the protein-protein interaction landscape of the hypusine modification system. In addition, we validated the interaction of eIF-5A with some of the newly identified associated proteins in more detail. Our analysis has revealed numerous novel interactions, and thus provides a valuable resource for understanding how this crucial homeostatic signaling pathway affects different cellular functions.


Assuntos
Lisina/análogos & derivados , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Animais , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Humanos , Lisina/metabolismo , Espectrometria de Massas , Camundongos , Oxigenases de Função Mista/metabolismo , Corpos Multivesiculares/metabolismo , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Nucleofosmina , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fragmentos de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Transporte Proteico , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Proteínas Ribossômicas/metabolismo , Frações Subcelulares/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
3.
Cancer Res ; 81(15): 4066-4078, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183356

RESUMO

One-carbon (1C) metabolism has a key role in metabolic programming with both mitochondrial (m1C) and cytoplasmic (c1C) components. Here we show that activating transcription factor 4 (ATF4) exclusively activates gene expression involved in m1C, but not the c1C cycle in prostate cancer cells. This includes activation of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) expression, the central player in the m1C cycle. Consistent with the key role of m1C cycle in prostate cancer, MTHFD2 knockdown inhibited prostate cancer cell growth, prostatosphere formation, and growth of patient-derived xenograft organoids. In addition, therapeutic silencing of MTHFD2 by systemically administered nanoliposomal siRNA profoundly inhibited tumor growth in preclinical prostate cancer mouse models. Consistently, MTHFD2 expression is significantly increased in human prostate cancer, and a gene expression signature based on the m1C cycle has significant prognostic value. Furthermore, MTHFD2 expression is coordinately regulated by ATF4 and the oncoprotein c-MYC, which has been implicated in prostate cancer. These data suggest that the m1C cycle is essential for prostate cancer progression and may serve as a novel biomarker and therapeutic target. SIGNIFICANCE: These findings demonstrate that the mitochondrial, but not cytoplasmic, one-carbon cycle has a key role in prostate cancer cell growth and survival and may serve as a biomarker and/or therapeutic target.


Assuntos
Ciclo do Carbono/genética , Neoplasias da Próstata/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Nus
4.
Oncogene ; 38(35): 6301-6318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31312022

RESUMO

Cancer cells exploit many of the cellular adaptive responses to support their survival needs. One such critical pathway in eukaryotic cells is the unfolded protein response (UPR) that is important in normal physiology as well as disease states, including cancer. Since UPR can serve as a lever between survival and death, regulated control of its activity is critical for tumor formation and growth although the underlying mechanisms are poorly understood. Here we show that one of the main transcriptional effectors of UPR, activating transcription factor 4 (ATF4), is essential for prostate cancer (PCa) growth and survival. Using systemic unbiased gene expression and proteomic analyses, we identified a novel direct ATF4 target gene, family with sequence similarity 129 member A (FAM129A), which is critical in mediating ATF4 effects on prostate tumorigenesis. Interestingly, FAM129A regulated both PERK and eIF2α in a feedback loop that differentially channeled the UPR output. ATF4 and FAM129A protein expression is increased in patient PCa samples compared with benign prostate. Importantly, in vivo therapeutic silencing of ATF4-FAM129A axis profoundly inhibited tumor growth in a preclinical PCa model. These data support that one of the canonical UPR branches, through ATF4 and its target gene FAM129A, is required for PCa growth and thus may serve as a novel therapeutic target.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Biomarcadores Tumorais/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias da Próstata/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Proliferação de Células/genética , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , Células Tumorais Cultivadas
5.
EMBO Mol Med ; 7(3): 315-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25680860

RESUMO

The six transmembrane protein of prostate 2 (STAMP2) is an androgen-regulated gene whose mRNA expression is increased in prostate cancer (PCa). Here, we show that STAMP2 protein expression is increased in human PCa compared with benign prostate that is also correlated with tumor grade and treatment response. We also show that STAMP2 significantly increased reactive oxygen species (ROS) in PCa cells through its iron reductase activity which also depleted NADPH levels. Knockdown of STAMP2 expression in PCa cells inhibited proliferation, colony formation, and anchorage-independent growth, and significantly increased apoptosis. Furthermore, STAMP2 effects were, at least in part, mediated by activating transcription factor 4 (ATF4), whose expression is regulated by ROS. Consistent with in vitro findings, silencing STAMP2 significantly inhibited PCa xenograft growth in mice. Finally, therapeutic silencing of STAMP2 by systemically administered nanoliposomal siRNA profoundly inhibited tumor growth in two established preclinical PCa models in mice. These data suggest that STAMP2 is required for PCa progression and thus may serve as a novel therapeutic target.


Assuntos
Proteínas de Membrana/metabolismo , Estresse Oxidativo , Oxirredutases/metabolismo , Neoplasias da Próstata/patologia , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , FMN Redutase/genética , FMN Redutase/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Oxirredutases/genética , Neoplasias da Próstata/genética , Espécies Reativas de Oxigênio , Transplante Heterólogo
6.
Dis Model Mech ; 7(8): 963-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24832488

RESUMO

The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A), and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development. At the cellular level, we observed reduced proliferation and induction of senescence in 3T3 Dohh-/- cells as well as reduced capability for malignant transformation. Furthermore, mass spectrometry showed that deletion of DOHH results in an unexpected complete loss of hypusine modification. Our results provide new biological insight into the physiological roles of the second step of the hypusination of eIF5A. Moreover, the conditional mouse model presented here provides a powerful tool for manipulating hypusine modification in a temporal and spatial manner, to analyse both how this unique modification normally functions in vivo as well as how it contributes to different pathological conditions.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Desenvolvimento Embrionário , Lisina/análogos & derivados , Oxigenases de Função Mista/antagonistas & inibidores , Células 3T3 , Alelos , Animais , Caenorhabditis elegans , Proliferação de Células , Senescência Celular , Modelos Animais de Doenças , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Técnicas de Inativação de Genes , Hidroxilação , Lisina/metabolismo , Camundongos , Oxigenases de Função Mista/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fenótipo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas ras/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
7.
PLoS One ; 7(8): e43468, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927971

RESUMO

Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA) could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Lisina/análogos & derivados , Oxigenases de Função Mista/genética , Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Carmustina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Glioblastoma/patologia , Guanina/análogos & derivados , Guanina/farmacologia , Humanos , Lisina/biossíntese , Masculino , Oxigenases de Função Mista/metabolismo , Gradação de Tumores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/deficiência , Temozolomida , Fator de Iniciação de Tradução Eucariótico 5A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA