Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 9(18)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088302

RESUMO

Graft-versus-host disease (GvHD) is a life-threatening complication frequently occurring following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Since gut microbiota and regulatory T cells (Tregs) are believed to play roles in GvHD prevention, we investigated whether DP8α Tregs, which we have previously described to harbor a T cell receptor specificity for the gut commensal Faecalibacterium prausnitzii, could protect against GvHD, thereby linking the microbiota and its effect on GvHD. We observed a decrease in CD73+ DP8α Treg frequency in allo-HSCT patients 1 month after transplantation, which was associated with acute GvHD (aGvHD) development at 1 month after transplantation, as compared with aGvHD-free patients, without being correlated to hematological disease relapse. Importantly, CD73 activity was shown to be critical for DP8α Treg suppressive function. Moreover, the frequency of host-reactive DP8α Tregs was also lower in aGvHD patients, as compared with aGvHD-free patients, which could embody a protective mechanism responsible for the maintenance of this cell subset in GvHD-free patients. We also showed that human DP8α Tregs protected mice against xenogeneic GvHD through limiting deleterious inflammation and preserving gut integrity. Altogether, these results demonstrated that human DP8α Tregs mediate aGvHD prevention in a CD73-dependent manner, likely through host reactivity, advocating for the use of these cells for the development of innovative therapeutic strategies to preclude aGvHD-related inflammation.


Assuntos
5'-Nucleotidase , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Linfócitos T Reguladores , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/microbiologia , Linfócitos T Reguladores/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Animais , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/imunologia , Camundongos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Transplante Homólogo , Adulto Jovem , Faecalibacterium prausnitzii/imunologia , Doença Aguda
2.
Front Immunol ; 13: 1026994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479125

RESUMO

In mice, microbiota-induced Tregs both maintain intestinal homeostasis and provide resistance to immuno-pathologies in the adult. Identifying their human functional counterpart therefore represents an important goal. We discovered, in the human colonic lamina propria and blood, a FoxP3-negative IL-10-secreting Treg subset, which co-expresses CD4 and CD8α (hence named DP8α) and displays a TCR-reactivity against Faecalibacterium prausnitzii, indicating a role for this symbiotic bacterium in their induction. Moreover, supporting their role in intestinal homeostasis, we previously reported both their drastic decrease in IBD patients and their protective role in vivo against intestinal inflammation, in mice. Here, we aimed at identifying the genomic, phenotypic and functional signatures of these microbiota-induced Tregs, towards delineating their physiological role(s) and clinical potential. Human F. prausnitzii-reactive DP8α Treg clones were derived from both the colonic lamina propria and blood. RNA-sequencing, flow cytometry and functional assays were performed to characterize their response upon activation and compare them to donor- and tissue-matched FoxP3+ Treg clones. DP8α Tregs exhibited a unique mixed Tr1-like/cytotoxic CD4+ T cell-profile and shared the RORγt and MAF master genes with mouse gut microbiota-induced FoxP3+ Tregs. We revealed their potent cytotoxic, chemotactic and IgA-promoting abilities, which were confirmed using in vitro assays. Therefore, besides their induction by a Clostridium bacterium, DP8α Tregs also partake master genes with mouse microbiota-induced Tregs. The present identification of their complete signature and novel functional properties, should be key in delineating the in vivo roles and therapeutic applications of these unique human microbiota-induced Tregs through their study in pathological contexts, particularly in inflammatory bowel diseases.


Assuntos
Bioensaio , Linfócitos T Reguladores , Humanos , Camundongos , Animais , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA