Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Environ Manage ; 280: 111699, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33272656

RESUMO

This paper tries to analyse the technical and economic performance of a full-scale passive Disperse Alkaline Substrate (DAS) treatment plant steadily operating for 28 months (840 days) to treat extremely acidic and metal rich mine waters in the Iberian Pyrite Belt (SW Spain). For the first time, an economic evaluation of this technology and its comparison with other passive treatments is reported. During this period, around 56,000 m3 of mine waters have been treated, without significant clogging or exhaustion of the alkaline substrate. The efficiency of the system is demonstrated by a significant decrease in the average net acidity (from 2005 to -43 mg/L as CaCO3 equivalent) and the total elimination of Al, Cu, REY, Zn, As, Cr, Mo, V, Cd, Pb, Co and other trace metals. Water quality of the treated output discharge meets the threshold values for irrigation and drinking standards, except for Fe, Mn and sulphate. The accumulation of elements of economic interest in the waste (e.g., 32 t of Fe, 6.1 t of Al, 0.8 t of Cu, 0.8 t of Zn, 39.4 kg of REE, 20 kg of Co or 1 kg of Sc), easily extractable with diluted acids, may turn a hazardous waste into a valuable resource. The benefits associated with the revalorization of this metal-rich waste could reach a total of 27478 USD, but is more reliably estimated to be around 8243 USD due to technologic limitations. This benefit would help to defray the maintenance costs (8428 €) and make DAS an economically self-sustainable treatment. The annual treatment cost for DAS was 0.27 €/m3, being the lowest value found among other reported conventional passive schemes, and from 8 to 12 times lower compared to active technologies. The results obtained prove that the DAS technology is the most technically and economically sustainable way to decontaminate acid and metal-rich mine waters in abandoned mines.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Metais/análise , Metais Pesados/análise , Mineração , Espanha , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 275: 111251, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846361

RESUMO

The optimization of the dispersed alkaline substrate (DAS) technology was investigated to achieve the treatment of highly acidic and polluted effluents from a phosphogypsum pile in an orphan site of SW Spain. This phosphogypsum disposal area is located on the Tinto river marsh soils, where it acts as a source of pollution for the estuarine environment, releasing high concentrations of metal(loid)s and radionuclides, which degrade the surrounding waters. The methodology consists of flowing the leachates through columns loaded with a combination of a fine-grained alkaline reagent scattered in a non-reactive matrix to raise the water pH while decreasing the solubility of dissolved contaminants. Seven columns were built, one for each of the alkaline reagent used: limestone, barium carbonate, biomass ash, fly ash, MgO, Mg(OH)2, and Ca(OH)2. The Ca(OH)2-DAS and MgO-DAS treatment systems showed the highest effectiveness, reaching near-total removal for PO4, F, Fe, Zn, Cu, Al, Cr, and U with initial reagent mass:treated volume ratios of 36.3 g/L and 7.57 g/L, respectively. Total As removal was only achieved in the Ca(OH)2-DAS treatment. Phosphate precipitation was the main mechanism responsible for pollutants removal. Geochemical modeling using PHREEQC code and mineralogical evidence confirmed the precipitation of these minerals. This study forms the basis of an effective and environmentally sustainable treatment system for phosphogypsum leachates to reduce the impact of the fertilizer industry worldwide.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Sulfato de Cálcio , Fósforo , Espanha , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 51(1): 28-37, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27995804

RESUMO

Basaluminite precipitation may play an important role in the behavior of trace elements in water and sediments affected by acid mine drainage and acid sulfate soils. In this study, the affinity of basaluminite and schwertmannite for arsenate and selenate is compared, and the coordination geometries of these oxyanions in both structures are reported. Batch isotherm experiments were conducted to examine the sorption capacity of synthetic schwertmannite and basaluminite and the potential competitive effect of sulfate. In addition, synchrotron-based techniques such as differential pair distribution function (d-PDF) analysis and extended X-ray absorption fine structure (EXAFS) were used to determine the local structure of As(V) and Se(VI) complexes. The results show that oxyanion exchange with structural sulfate was the main mechanism for removal of selenate, whereas arsenate was removed by a combination of surface complexes and oxyanion exchange. The arsenate adsorption capacity of basaluminite was 2 times higher than that of schwertmannite and 3 times higher than that of selenate in both phases. The sulfate:arsenate and sulfate:selenate exchange ratios were 1:2 and 1:1, respectively. High sulfate concentrations in the solutions did not show a competitive effect on arsenate sorption capacity but had a strong impact on selenate uptake, suggesting some kind of specific interaction for arsenate. Both d-PDF and EXAFS results indicated that the bidentate binuclear inner sphere was the most probable type of ligand for arsenate on both phases and for selenate on schwertmannite, whereas selenate forms outer-sphere complexes in the aluminum octahedral interlayer of basaluminite. Overall, these results show a strong affinity of poorly crystalline aluminum phases such as basaluminite for As(V) and Se(VI) oxyanions, with adsorption capacities on the same order of magnitude as those of iron oxides. The results obtained in this study are relevant to the understanding of trace element behavior in environments affected by acid water, potentially opening new research lines focused on remediation by natural attenuation processes or engineered water treatment systems.


Assuntos
Arseniatos/química , Ácido Selênico , Adsorção , Alumínio , Mineração
4.
Environ Sci Technol ; 50(15): 8255-62, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27351211

RESUMO

Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited.


Assuntos
Poluentes Químicos da Água , Ítrio , Ácidos , Metais Terras Raras , Mineração
5.
Water Res ; 233: 119791, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863282

RESUMO

This study evaluates for the first time the impact of a large wildfire on the hydrogeochemistry of a deeply AMD-affected river at the beginning of the wet season. To accomplish this, a high-resolution water monitoring campaign was performed within the basin coinciding with the first rainfalls after summer. Unlike similar events recorded in AMD-affected areas, where dramatic increases in most dissolved element concentrations, and decreases in pH values are observed as a result of evaporitic salts flushing and the transport of sulfide oxidation products from mine sites, a slight increase in pH values (from 2.32 to 2.88) and decrease in element concentrations (e.g.; Fe: 443 to 205 mg/L; Al: 1805 to 1059 mg/L; sulfate: 22.8 to 13.3 g/L) was observed with the first rainfalls after the fire. The washout of wildfire-ash deposited in the riverbanks and the drainage area, constituted by alkaline mineral phases, seems to have counterbalanced the usual behavior and patterns of the river hydrogeochemistry during autumn. Geochemical results indicate that a preferential dissolution occurs during ash washout (K > Ca > Na), with a quick release of K followed by an intense dissolution of Ca and Na. On the other hand, in unburnt zones parameters and concentrations vary to a lesser extent than burnt areas, being the washout of evaporitic salts the dominant process. With subsequent rainfalls ash plays a minor role on the river hydrochemistry. Elemental ratios (Fe/SO4 and Ca/Mg) and geochemical tracers in both ash (K, Ca and Na) and AMD (S) were used to prove the importance of ash washout as the dominant geochemical process during the study period. Geochemical and mineralogical evidences point to intense schwertmannite precipitation as the main driver of reduction in metal pollution. The results of this study shed light on the response of AMD-polluted rivers to certain climate change effects, since climate models predict an increase in the number and intensity of wildfires and torrential rain events, especially in Mediterranean climates.


Assuntos
Poluentes Químicos da Água , Incêndios Florestais , Rios , Poluentes Químicos da Água/análise , Sais , Monitoramento Ambiental
6.
Mar Pollut Bull ; 187: 114491, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566513

RESUMO

This research reports the effects of pH increase on contaminant mobility in acid mine drainage from the Iberian Pyrite Belt by seawater mixing in the laboratory, simulating the processes occurring in the Estuary of Huelva (SW Iberian Peninsula). Concentrations of Al, Fe, As, Cu and REY in mixing solutions significantly decreased with increasing pH. Schwertmannite precipitation at pH 2.5-4.0 led to the total removal of Fe(III) and As. Subsequently, iron-depleted solutions began to be controlled by precipitation of basaluminite at pH 4.5-6.0, which acted as a sink for Al, Cu and REY. Nevertheless, as the pH rises, schwertmannite becomes unstable and releases back to solution the previously retained As. Moreover, other elements (S, Zn, Cd, Ni and Co) behaved conservatively in mixing solutions with no participation in precipitation processes. Some toxic elements finally end up to the Atlantic Ocean contributing to the total pollutant loads and environmentally threatening the coastal areas.


Assuntos
Oligoelementos , Poluentes Químicos da Água , Água , Compostos Férricos , Poluentes Químicos da Água/análise , Rios , Espanha , Monitoramento Ambiental
7.
Environ Pollut ; 306: 119448, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561798

RESUMO

This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 µg/L in the Tinto and Odiel estuaries, respectively, to 0.02 µg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 µg/L to 0.02 µg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl0 and K+ ions, which compete for adsorption sites with Tl+ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.


Assuntos
Estuários , Poluentes Químicos da Água , Ácidos/análise , Monitoramento Ambiental , Minerais , Material Particulado , Rios , Espanha , Tálio , Poluentes Químicos da Água/análise
8.
Environ Sci Process Impacts ; 24(9): 1383-1391, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35838030

RESUMO

Schwertmannite is a common nanomineral in acid sulfate environments such as Acid Mine Drainage (AMD) and Acid Sulfate Soils (ASS). Its high surface area and positively charged surface result in a strong affinity towards toxic oxyanions such as arsenate in solution. However, natural precipitation of schwertmannite also involves the accumulation of other impurities, in particular aluminum, an element that is often incorporated into the structure of Fe-oxide minerals, such as goethite and ferrihydrite, affecting their structural and surface properties. However, little is known about the effect of Al incorporation in schwertmannite on the removal capacity of toxic oxyanions found in AMD and ASS (e.g. arsenate). In this paper, schwertmannite samples with variable Al concentration were synthetized and employed in arsenate adsorption isotherm experiments at a constant pH of 3.5. Solid samples before and after arsenate adsorption were characterized using high energy X-ray diffraction and pair distribution function analyses in order to identify structural differences correlated with the Al content as well as variations in the coordination of arsenate adsorbed on the mineral surface. These analyses showed limited Al accumulation on schwertmannite (up to 5%) with a low effect on its structure. The maximum arsenate sorption capacity (258 mmolH2AsO4 molFe-1) was in the range of that with pure schwertmannite, but a higher proportion of inner-sphere coordination was observed. Finally, Al was found to desorb from schwertmannite, with adsorbed arsenate preventing this effect and increasing the stability of the mineral. These results are useful to interpret observations from the field, in particular from river water affected by AMD and ASS, where similar conditions are observed, and where aluminum incorporation is expected.


Assuntos
Arseniatos , Compostos de Ferro , Adsorção , Alumínio , Arseniatos/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Minerais/química , Óxidos , Solo , Sulfatos/química , Propriedades de Superfície , Água
9.
Chemosphere ; 295: 133876, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35131274

RESUMO

A phosphogypsum stack located in SW Spain releases highly acidic and contaminated leachates to the surrounding estuarine environment. Column experiments, based on a mixture of an alkaline reagent (i.e., MgO or Ca(OH)2) dispersed in an inert matrix (dispersed alkaline substrate (DAS) technology), have shown high effectiveness for the treatment of phosphogypsum leachates. MgO-DAS and Ca(OH)2-DAS treatment systems achieved near total removal of PO4, F, Fe, Zn, Al, Cr, Cd, U, and As, with initial reactive mass:volume of leachate treated ratios of 3.98 g/L and 6.35 g/L, respectively. The precipitation of phosphate (i.e., brushite, cattiite, fluorapatite, struvite and Mn3Zn(PO4)2·2H2O) and sulfate (i.e., despujolsite and gypsum) minerals could control the solubility of contaminants during the treatments. Therefore, the hazardousness of these wastes must be accurately assessed in order to be properly managed, avoiding potential environmental impacts. For this purpose, two standardized leaching tests (EN-12457-2 from the European Union and TCLP from the United States) were performed. According to European Union (EN-12457-2) regulation, some wastes recovered from DAS treatments should be classified as hazardous wastes because of the high concentrations of SO4 or Sb that are leached. However, according to United States (US EPA-TCLP) legislation, all DAS wastes are designated as non-hazardous wastes. Moreover, the solids generated in the DAS systems could constitute a promising secondary source of calcite and/or P. This research could contribute to worldwide suitable waste management for the fertilizer industry.


Assuntos
Fertilizantes , Gerenciamento de Resíduos , Conservação dos Recursos Naturais , Resíduos Perigosos , Estruvita
10.
Environ Sci Technol ; 45(18): 7826-33, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21819094

RESUMO

Synchrotron radiation-induced micro-X-ray analysis were applied to characterize the newly formed phases that precipitate in a passive treatment system using magnesium oxide to remove high concentrations of zinc (ca. 440 mg/L) and other minor metals from neutral pretreated waters in the Iberian Pyrite Belt (SW Iberian Peninsula). Micro-X-ray fluorescence (µ-XRF) maps of polished samples were used to find spatial correlations among metals, pinpointing zones of interest where micro-X-ray diffraction (µ-XRD) data were exploited to identify the mineral phases responsible for metal retention. This coupled technique identified hydrozincite (Zn(5)(CO(3))(2)(OH)(6)) and minor loseyite ((Mn,Zn)(7)(CO(3))(2)(OH)(10)) as the mineral sinks for Zn and also other potentially toxic elements such as Co and Ni. Although hydrozincite retains traces of Mn, this metal is mainly retained by precipitation of loseyite. The precipitation of zinc hydroxy-carbonates and their ability to uptake other metals (Mn, Co, and Ni) is hence of potential interest not only for the treatment of contaminated waters but also for the generation of a solid waste that could be exploited as a new Zn economic resource.


Assuntos
Resíduos Industriais/análise , Óxido de Magnésio/química , Metais/química , Mineração , Eliminação de Resíduos Líquidos/métodos , Compostos de Zinco/química , Precipitação Química , Metais/análise , Silício/análise , Espectrometria por Raios X , Síncrotrons , Difração de Raios X
11.
Environ Monit Assess ; 175(1-4): 109-26, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20490913

RESUMO

The geochemical characteristics of coal cleaning rejects (CCR) in Santa Catarina State, Brazil, were investigated. Around 3.5 million ton/year of coal waste are dumped in Santa Catarina State. Coal beneficiation by froth flotation results in large amounts of CCR composed of coaly and mineral matter, the latter characterised by the occurrence of sulphide minerals and a broad array of leachable elements. The total and leachable contents of more than 60 elements were analysed. Atmospheric exposure promotes sulphide oxidation that releases substantial sulphate loads as well as Ca2+, K+, Mg2+, Cl- and Al3+. The metals with the most severe discharges were Zn, Cu, Mn, Co, Ni and Cd. Most trace pollutants in the CCR displayed a marked pH-dependent solubility, being immobile in near-neutral samples. The results highlight the complex interactions among mineral matter solubility, pH and the leaching of potentially hazardous elements.


Assuntos
Carvão Mineral , Monitoramento Ambiental/métodos , Mineração , Brasil
12.
Sci Total Environ ; 764: 143796, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33387768

RESUMO

This paper addresses the behaviour of several technology critical metals (TCMs), i.e., rare earth elements (REEs), Y, Sc, Ga and Tl, in the Tinto River (SW Spain), quantifying their fluxes to the Atlantic Ocean and unravelling the governing geochemical processes controlling their solubility. To accomplish this goal, a high-resolution (2-24 h) sampling was performed during the hydrological year 2017/18. Mean dissolved concentrations of 380 µg/L of REE, 99 µg/L of Y, 15 µg/L of Sc, 9.2 µg/L of Ga and 4.8 µg/L of Tl were found. Most TCMs followed a behaviour similar to that of sulphate and base metals throughout the year, exhibiting a quasi-conservative behaviour due to acidic conditions. However, dissolved Tl concentrations seem to be strongly controlled by Tl incorporation onto secondary minerals and diatoms deposited on the riverbed, especially during the dry season. The remobilization of riverbed sediments led to the transport of significant amounts of TCMs associated with particulate matter, especially Al oxy-hydroxy-sulphates or Al-silicates rather than Fe precipitates (except for Tl and Ga). Around 5.8 t of REE, 1.3 t of Y, 248 kg of Sc, 139 kg of Ga and 138 kg of Tl were delivered annually in their dissolved forms by the Tinto River to the Atlantic Ocean, which constitutes around 0.09% of the dissolved global flux into the oceans of Y, 0.02% of the REE flux, 0.01% of the Ga flux and 0.001% of the Sc flux.

13.
Sci Total Environ ; 722: 137905, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197167

RESUMO

This study deals with the metal partitioning and bioavailability of metal/loids in the estuary Ria of Huelva (SW Spain) which is strongly affected by historical mining and industrial activities. To address this issue, traditional (i.e., grab samples) and passive sampling (i.e., diffusive gradient in thin films, DGTs) was carried out in the outer part of the estuary during different tidal cycles in order to determine the dissolved and particulate metal/loid concentrations. The dissolved concentrations exceeded, by several orders of magnitude, those reported in other estuaries worldwide that are affected by anthropogenic activities. A spatial pattern was observed in the metal distribution; a decrease seaward was recorded for some of the elements associated with mining (e.g., Cu, Zn, and Cd), the opposite tendency is observed for others associated with harbor emissions (e.g., Sn, Ni, or Pb). A different metal/loid partitioning pattern was also observed; Fe, and to a lesser extent Pb and Sn, were chiefly found in the particulate matter, while the rest of the elements were mainly found in the dissolved form. The bioavailability of the metal/loids was studied by speciation using both geochemical modeling and DGTs; while concentrations in DGTs supported metal/loid speciation for Zn, Cd, Mn, Co, As, and Sb according to their affinity to form strong or weak complexes, some discrepancies were observed for other elements such as Cu, V, Fe, and Pb, which are prone to forming strong complexes. The main reason behind the unexpectedly high Fe and Pb DGTs concentrations may be associated with their presence in the colloidal particles passing through the DGT. There was a strong positive correlation between dissolved and DGT concentrations for Cd and Mn, and to a lesser extent for Fe and Cu, highlighting the direct relationship between the concentrations in water and availability to living organisms in the estuary.

14.
Chemosphere ; 242: 125174, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31675582

RESUMO

Salt marshes are natural deposits of heavy metals in estuarine systems, where sulphide precipitation associated with redox changes often results in a natural attenuation of contamination. In the present study, we focus on the effects of variable redox conditions imposed to a highly-polluted phosphogypsum stack that is directly piled over the salt marsh soil in the Tinto River estuary (Huelva, Spain). The behaviour of contaminants is evaluated in the phosphogypsum waste and in the marsh basement, separately, in controlled, experimentally-induced oscillating redox conditions. The results revealed that Fe, and to a lesser extent S, control most precipitation/dissolution processes. Ferric iron precipitates in the form of phosphates and oxyhydroxides, while metal sulphide precipitation is insignificant and appears to be prevented by the abundant formation of Fe phosphates. An antagonistic evolution with changing redox conditions was observed for the remaining contaminants such as Zn, As, Cd and U, which remained mobile in solution during most of experimental run. Therefore, these findings revealed that high concentrations of phosphates inhibit the typical processes of immobilisation of pollutants in salt-marshes which highlights the elevated contaminant potential of phosphogypsum wastes on coastal environments.


Assuntos
Sulfato de Cálcio/química , Estuários , Oxirredução , Fósforo/química , Monitoramento Ambiental/métodos , Ferro/química , Metais Pesados/análise , Fosfatos/química , Rios , Espanha , Poluentes Químicos da Água/análise , Áreas Alagadas
18.
Sci Total Environ ; 660: 395-405, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30640108

RESUMO

This research evaluates the feasibility of an alkaline treatment system for highly acid leachates from a phosphogypsum stack located in an estuarine environment degraded by such pollution. The presented methodology consists of the addition of a Ca(OH)2 solution to the different types of phosphogypsum-related acidic leachates with the aim to increase their pH and subsequently, to provoke the precipitation and immobilization of the dissolved contaminants. In fact, phosphates and fluorides reached removal of 100% and 90%, respectively. As regards metals, removal values close to 100% were reached for Fe, Al, Cr, Cd, U and Zn, whereas it did not seem to be totally effective for other elements such as As (removal of 57-82%) and Sb (4-36%). The decrease of contaminant concentrations was caused probably by co-precipitation and/or adsorption to phosphate phases, together with by fluoride precipitation. The solid phases formed during the treatment were subjected to two standard leaching tests (EN 12457-2 from the EU and TCLP from the US) in order to conduct a risk and management assessment. In this context, some of the precipitates formed during the treatment would be classified as hazardous wastes, due to the high concentration of As leached. Moreover, the potential economic costs of a convectional active treatment system were also explored. This study sets the basis for a new research line with the aim to minimise the impact of the phosphogypsum stacks worldwide to their adjacent environment.

19.
Chemosphere ; 216: 19-30, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30359913

RESUMO

The cementation complex of Las Viñas (SW Spain) is a partially reclaimed abandoned mine site located in the drainage basin of a water reservoir currently under construction. The aim of this investigation was to analyze these mine soils to evaluate their potential environmental impact, especially on the final reservoir water quality. Results evidence the extremely high acidity of soils (pH of 3.4 and maximum potential acidity of 47 kg CaCO3/ton), with high concentrations of trace elements, especially As, Pb and Cu. Sequential extraction data reveal the potential release of significant quantities of Mn, Cd, Cu and other easily-soluble trace elements by rainfalls. The weathering and transport of soils to the bottom sediments of the planned reservoir could lead to the release of significant quantities of toxic trace elements to the water column if anoxic (mainly As, Sb, Cr, Ni, Cu and Pb) or oxic (mainly Hg, Pb, V, Cu and As) conditions are found in the sediments. The acidity and metals released from these soils could jeopardize the quality of the reservoir waters. Remediation measures must be therefore adopted, focused on the cleanup and liming of soils in order to promote colonization and vegetation succession, thus avoiding soil erosion and limiting metal release to the hydrosphere. This study proposes the use of different low-cost materials to improve the soil quality, limiting the metal transfer to the planned reservoir water. The information contained in this study could be of great importance in other watersheds affected by abandoned mine sites.


Assuntos
Mineração , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Espanha , Oligoelementos/análise , Qualidade da Água
20.
J Hazard Mater ; 363: 258-267, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30308365

RESUMO

The Gabes Gulf had received huge quantities of phosphogypsum discharged from fertilizer plants. Dumping phosphogypsum in coastal waters leads to the formation of foam layers which can float on the surface and be passively transported to distant areas. This is the first attempt at geochemical and mineralogical characterization of these industrial foams in order to understand their role in the dynamic and behavior of contaminants in marine environment. Chemically, phosphogypsum foams (PGFs) are heavily loaded with radiochemical contaminants. Their mineralogical composition showed a prevalence of synthetic gypsum followed by other secondary minerals including halite, quartz, dolomite, sphalerite-Cd and fluorapatite. PGFs are rich in organic matter (OM), precursor of their formation. Once released in gypseous water, the OM in solution undergoes agglomeration, cementing and flotation steps leading to the formation of floating foams. The foams' OM was found to control the mobility of industrial contaminants contributing then to the marine environment pollution. Consequently, PGFs are the main accumulating, transporting and dispersion agent of phosphogypsum radiochemical contaminants. Thus, PGFs removal has the potential to reduce enormously the dynamics of contaminants transferred from the fertilizer plants to the aquatic environment, reducing thus their impacts on the marine environment and health status in Gabes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA