Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(4): e0168722, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920206

RESUMO

The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 µM, respectively, in Vero cells; EC50s of 2.2 and 1.9 µM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.


Assuntos
Flavivirus , Neuroblastoma , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Humanos , Febre do Nilo Ocidental/tratamento farmacológico , Antivirais/uso terapêutico , Células Vero , Neuroblastoma/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico , Replicação Viral
2.
J Neuroinflammation ; 20(1): 217, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759218

RESUMO

BACKGROUND: Viral rewiring of host bioenergetics and immunometabolism may provide novel targets for therapeutic interventions against viral infections. Here, we have explored the effect on bioenergetics during the infection with the mosquito-borne flavivirus West Nile virus (WNV), a medically relevant neurotropic pathogen causing outbreaks of meningitis and encephalitis worldwide. RESULTS: A systematic literature search and meta-analysis pointed to a misbalance of glucose homeostasis in the central nervous system of WNV patients. Real-time bioenergetic analyses confirmed upregulation of aerobic glycolysis and a reduction of mitochondrial oxidative phosphorylation during viral replication in cultured cells. Transcriptomics analyses in neural tissues from experimentally infected mice unveiled a glycolytic shift including the upregulation of hexokinases 2 and 3 (Hk2 and Hk3) and pyruvate dehydrogenase kinase 4 (Pdk4). Treatment of infected mice with the Hk inhibitor, 2-deoxy-D-glucose, or the Pdk4 inhibitor, dichloroacetate, alleviated WNV-induced neuroinflammation. CONCLUSIONS: These results highlight the importance of host energetic metabolism and specifically glycolysis in WNV infection in vivo. This study provides proof of concept for the druggability of the glycolytic pathway for the future development of therapies to combat WNV pathology.


Assuntos
Febre do Nilo Ocidental , Humanos , Animais , Camundongos , Glicólise , Sistema Nervoso Central , Surtos de Doenças , Perfilação da Expressão Gênica
3.
Org Biomol Chem ; 21(26): 5457-5468, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37337819

RESUMO

Reductive amination plays a key role in the medicinal chemistry toolbox since it allows the mono alkylation of an amine or aniline. In this work, reductive amination of functionalized aldehydes with aniline derivatives of adenine and closely related 7-deazapurines has been successfully performed using H-cube technology so that imine formation and its reduction are performed "in situ". The set-up procedure surmounts some of the drawbacks of "in batch" protocols by avoiding the handling of reductant reagents, long reaction times and tedious work-ups. The here described procedure allows a high conversion into the reductive amination products together with an easy work-up by just evaporation. More interestingly, this set-up does not require the presence of acids so that acid-sensitive protecting groups can be present both at the aldehyde and at the heterocycle.

4.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675241

RESUMO

Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/ß-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.


Assuntos
Anti-Helmínticos , Salicilanilidas , Humanos , Salicilanilidas/farmacologia , Salicilanilidas/química , Niclosamida/farmacologia , Anti-Helmínticos/farmacologia , Transdução de Sinais
5.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430407

RESUMO

Flavivirus comprises globally emerging and re-emerging pathogens such as Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV), among others. Although some vaccines are available, there is an unmet medical need as no effective antiviral treatment has been approved for flaviviral infections. The development of host-directed antivirals (HDAs) targeting host factors that are essential for viral replication cycle offers the opportunity for the development of broad-spectrum antivirals. In the case of flaviviruses, recent studies have revealed that neutral sphingomyelinase 2, (nSMase2), involved in lipid metabolism, plays a key role in WNV and ZIKV infection. As a proof of concept, we have determined the antiviral activity of the non-competitive nSMase2 inhibitor DPTIP against WNV and ZIKV virus. DPTIP showed potent antiviral activity with EC50 values of 0.26 µM and 1.56 µM for WNV and ZIKV, respectively. In order to unravel the allosteric binding site of DPTIP in nSMase2 and the details of the interaction, computational studies have been carried out. These studies have revealed that DPTIP could block the DK switch in nSMase2. Moreover, the analysis of the residues contributing to the binding identified His463 as a crucial residue. Interestingly, the inhibitory activity of DPTIP on the H463A mutant protein supported our hypothesis. Thus, an allosteric cavity in nSMase2 has been identified that can be exploited for the development of new inhibitors with anti-flaviviral activity.


Assuntos
Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Humanos , Esfingomielina Fosfodiesterase , Vírus do Nilo Ocidental/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Sítio Alostérico
6.
Antimicrob Agents Chemother ; 65(7): e0256620, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33875421

RESUMO

Chikungunya virus (CHIKV) nonstructural protein 1 (nsP1) harbors the methyltransferase (MTase) and guanylyltransferase (GTase) activities needed for viral RNA capping and represents a promising antiviral drug target. We compared the antiviral efficacies of nsP1 inhibitors belonging to the MADTP, CHVB, and FHNA series (6'-fluoro-homoneplanocin A [FHNA], its 3'-keto form, and 6'-ß-fluoro-homoaristeromycin). Cell-based phenotypic cross-resistance assays revealed that the CHVB and MADTP series had similar modes of action that differed from that of the FHNA series. In biochemical assays with purified Semliki Forest virus and CHIKV nsP1, CHVB compounds strongly inhibited MTase and GTase activities, while MADTP-372 had a moderate inhibitory effect. FHNA did not directly inhibit the enzymatic activity of CHIKV nsP1. The first-of-their-kind molecular-docking studies with the cryo-electron microscopy (cryo-EM) structure of CHIKV nsP1, which is assembled into a dodecameric ring, revealed that the MADTP and CHVB series bind at the S-adenosylmethionine (SAM)-binding site in the capping domain, where they would function as competitive or noncompetitive inhibitors. The FHNA series was predicted to bind at the secondary binding pocket in the ring-aperture membrane-binding and oligomerization (RAMBO) domain, potentially interfering with the membrane binding and oligomerization of nsP1. Our cell-based and enzymatic assays, in combination with molecular docking and mapping of compound resistance mutations to the nsP1 structure, allowed us to group nsP1 inhibitors into functionally distinct classes. This study identified druggable pockets in the nsP1 dodecameric structure and provides a basis for the rational design, optimization, and combination of inhibitors of this unique and promising antiviral drug target.


Assuntos
Vírus Chikungunya , Proteínas não Estruturais Virais , Adenosina/análogos & derivados , Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/genética , Replicação Viral
7.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766444

RESUMO

New substituted benzo[g]indazoles functionalized with a 6-nitro and 6-amino groups have been synthesized by the reaction of benzylidene tetralones with hydrazine in acetic acid. The resulting conformationally-constrained compounds were evaluated for their antiproliferative activity against selected cancer cell lines. The nitro-based indazoles 11a, 11b, 12a and 12b have shown IC50 values between 5-15 µM against the lung carcinoma cell line NCI-H460. Moreover, the nitro compounds were tested for antibacterial activity where compounds 12a and 13b have shown MIC values of 250 and 62.5 µg/mL against N. gonorrhoeae with no hemolytic activity in human red blood cells (RBC).


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Indazóis/química , Neoplasias/tratamento farmacológico , Antibacterianos/síntese química , Antineoplásicos/síntese química , Hemólise/efeitos dos fármacos , Humanos , Neoplasias/patologia , Células Tumorais Cultivadas
8.
J Pharmacol Exp Ther ; 366(2): 377-389, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29871992

RESUMO

New series of polyphenols with a hydrophilic galloyl-based head and a hydrophobic N-acyl tail, linked through a serinol moiety, have been synthesized and tested against colon cancer cell growth. Our structure activity relationship studies revealed that galloyl moieties are essential for growth inhibition. Moreover, the length of the N-acyl chain is crucial for the activity. Introduction of a (Z) double bond in the acyl chain increased the anticancer properties. Our findings demonstrate that 16, the most potent compound within this series, has inhibitory effects on colon cancer cell growth and metabolism (glycolysis and mitochondrial respiration) at the same time that it activates 5'AMP-activated kinase (AMPK) and induces apoptotic cell death. Based on these results, we propose that 16 might reprogram colon cancer cell metabolism through AMPK activation. This might lead to alterations on cancer cell bioenergy compromising cancer cell viability. Importantly, these antiproliferative and proapoptotic effects are selective for cancer cells. Accordingly, these results indicate that 16, with an unsaturated C18 chain, might be a useful prototype for the development of novel colon cancer cell growth inhibitors affecting cell metabolism.


Assuntos
Antineoplásicos/farmacologia , Polifenóis/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos
9.
Molecules ; 23(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932141

RESUMO

Cationic and non-peptide small molecules containing a total of six positive charges arranged on one side and a long aliphatic tail on the other have been synthesized and tested against Gram-positive and Gram-negative bacteria. The positive charges have been contributed by two aminophenol residues. These molecules have showed remarkable antimicrobial activity against Gram-positive bacteria including multidrug-resistant strains. Our structure⁻activity relationship studies demonstrated the importance of the length and flexibility of the hydrophobic tail for the antimicrobial activity. Importantly, these compounds are non-toxic to eukaryotic cells at the concentration affecting growth in bacteria, reflecting an acceptable margin of safety. The small size and easy synthetic accessibility of our molecules can be of interest for the further development of novel antimicrobials against Gram-positive bacterial pathogens, including multidrug-resistant strains.


Assuntos
Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Aminofenóis/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Cátions , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade da Espécie , Eletricidade Estática , Relação Estrutura-Atividade
10.
PLoS Pathog ; 10(4): e1004039, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722756

RESUMO

Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH), thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis.


Assuntos
Capsídeo/metabolismo , Enterovirus Humano B/fisiologia , Infecções por Enterovirus/metabolismo , Glutationa/metabolismo , RNA Viral/biossíntese , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Infecções por Enterovirus/genética , Glutationa/genética , Células HeLa , Humanos , Mutação , RNA Viral/genética , Células Vero
11.
Circ Res ; 115(12): 997-1006, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25287063

RESUMO

RATIONALE: Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes mellitus. OBJECTIVE: To test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. METHODS AND RESULTS: By using a ferric chloride (FeCl3)-induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp(-/-) and Tymp(+/-) mice compared with wild-type mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP-deficient mice. Collagen-, collagen-related peptide-, adenosine diphosphate-, or thrombin-induced platelet aggregation were significantly attenuated in Tymp(+/-) and Tymp(-/-) platelets, and in wild type or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain-binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn, and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp(+/-) mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased platelet-endothelial cell adhesion molecule 1 tyrosine phosphorylation and diminished collagen-related peptide- or collagen-induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl3-induced carotid artery thrombosis without affecting hemostasis. CONCLUSIONS: TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel antiplatelet and antithrombosis therapy.


Assuntos
Plaquetas/enzimologia , Transdução de Sinais , Trombose/enzimologia , Timidina Fosforilase/metabolismo , Sequência de Aminoácidos , Animais , Plaquetas/efeitos dos fármacos , Transplante de Medula Óssea , Cloretos , Inibidores Enzimáticos/farmacologia , Compostos Férricos , Haploinsuficiência , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Fenótipo , Fosforilação , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Transfusão de Plaquetas , Proteínas Proto-Oncogênicas c-akt/sangue , Proteínas Proto-Oncogênicas c-fyn/sangue , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-yes/sangue , Selenoproteína P/sangue , Transdução de Sinais/efeitos dos fármacos , Trombose/sangue , Trombose/induzido quimicamente , Trombose/prevenção & controle , Timidina Fosforilase/antagonistas & inibidores , Timidina Fosforilase/sangue , Timidina Fosforilase/deficiência , Timidina Fosforilase/genética , Fatores de Tempo , Quinases da Família src/sangue , Quinases da Família src/genética
12.
Org Biomol Chem ; 12(28): 5278-94, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24927059

RESUMO

The synthesis and the assessment of the anti-HIV activity of a set of molecules inspired by the multivalent structures of some naturally-occurring polyphenols (tannins) are reported. Different multibranched scaffolds have been derived from pentaerythritol as the central core which distribute spatially synthetic polyphenolic subunits based on 1-substituted 2,3,4-trihydroxyphenyl moieties. A tetrapodal compound () bearing four N-(2,3,4-trihydroxyphenyl)amide groups, exhibits remarkable selective activity against HIV-1 with EC50 values in the micromolar scale, in the same range as those reported for the most representative anti-HIV tannins. Preliminary SAR studies emphasize the importance of the 1-substituted 2,3,4-trihydroxyphenyl moiety, the presence of an amide as the linker and the multivalent architecture of these molecules, since the anti-HIV activity increases with the number of polyphenolic moieties. The data support the interest in synthetic polyphenols and represent a promising starting point for further design and development of selective HIV-1 inhibitors.


Assuntos
Fármacos Anti-HIV/síntese química , HIV-1/efeitos dos fármacos , HIV-2/efeitos dos fármacos , Polifenóis/síntese química , Propilenoglicóis/química , Taninos/química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Desenho de Fármacos , HIV-1/crescimento & desenvolvimento , HIV-2/crescimento & desenvolvimento , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Polifenóis/química , Polifenóis/farmacologia , Relação Estrutura-Atividade
13.
Antiviral Res ; 212: 105568, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842536

RESUMO

West Nile virus (WNV) is a re-emergent mosquito-borne RNA virus that causes major outbreaks of encephalitis around the world. However, there is no therapeutic treatment to struggle against WNV, and the current treatment relies on alleviating symptoms. Therefore, due to the threat virus poses to animal and human health, there is an urgent need to come up with fast strategies to identify and assess effective antiviral compounds. A relevant target when developing drugs against RNA viruses is the viral RNA-dependent RNA polymerase (RdRp), responsible for the replication of the viral genome within a host cell. RdRps are key therapeutic targets based on their specificity for RNA and their essential role in the propagation of the infection. We have developed a fluorescence-based method to measure WNV RdRp activity in a fast and reliable real-time way. Interestingly, rilpivirine has shown in our assay inhibition of the WNV RdRp activity with an IC50 value of 3.3 µM and its antiviral activity was confirmed in cell cultures. Furthermore, this method has been extended to build up a high-throughput screening platform to identify WNV polymerase inhibitors. By screening a small chemical library, novel RdRp inhibitors 1-4 have been identified. When their antiviral activity was tested against WNV in cell culture, 4 exhibited an EC50 value of 2.5 µM and a selective index of 12.3. Thus, rilpivirine shows up as an interesting candidate for repurposing against flavivirus. Moreover, the here reported method allows the rapid identification of new WNV RdRp inhibitors.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Ensaios de Triagem em Larga Escala , Antivirais/farmacologia , Antivirais/uso terapêutico , RNA Polimerase Dependente de RNA , Rilpivirina/farmacologia , Rilpivirina/uso terapêutico , Febre do Nilo Ocidental/tratamento farmacológico , Replicação Viral
14.
J Med Chem ; 66(15): 10432-10457, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37471688

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound 2 as a potent entry inhibitor lacking cellular toxicity. Chemical optimization of 2 rendered compounds 63 and 65, which also potently inhibited genuine SARS-CoV-2 cell entry. Thermofluor and microscale thermophoresis studies revealed their binding to S and to its isolated receptor binding domain (RBD), interfering with the interaction with ACE2. High-resolution cryoelectron microscopy structure of S, free or bound to 2, shed light on cell entry inhibition mechanisms by these compounds. Overall, this work identifies and characterizes a new class of SARS-CoV-2 entry inhibitors with clear potential for preventing and/or fighting COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Triptofano/farmacologia , Triptofano/metabolismo , Enzima de Conversão de Angiotensina 2/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Microscopia Crioeletrônica , Ligação Proteica
15.
ACS Med Chem Lett ; 13(1): 5-10, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35059112

RESUMO

The COVID pandemic has evidenced how vulnerable we are to emerging infectious diseases and how short our current armamentarium is. Flavivirus, single stranded RNA viruses transmitted by arthropods, are considered a global health challenge. No drugs to treat these infections have been approved. In this Viewpoint, we analyze the advantages and disadvantages of two different, but probably also complementary, therapeutic approaches: virus-targeting antivirals and host-targeting drugs.

16.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890135

RESUMO

The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.

17.
Antivir Chem Chemother ; 30: 20402066221130853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36305015

RESUMO

As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development. The meeting resulted in a dynamic and effective exchange of ideas and information, positively impacting the prompt progress towards new and effective prophylaxis and therapeutics.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Pandemias
18.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34832913

RESUMO

The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and viral infections. Thus, its pharmacological inhibition is of significant therapeutic interest. The best inhibitors described so far (leptomycin B and SINE compounds) interact with XPO1 through a covalent interaction with Cys528 located in the NES-binding cleft of XPO1. Based on the well-established feature of chalcone derivatives to react with thiol groups via hetero-Michael addition reactions, we have synthesized two series of chalcones. Their capacity to react with thiol groups was tested by incubation with GSH to afford the hetero-Michael adducts that evolved backwards to the initial chalcone through a retro-Michael reaction, supporting that the covalent interaction with thiols could be reversible. The chalcone derivatives were evaluated in antiproliferative assays against a panel of cancer cell lines and as XPO1 inhibitors, and a good correlation was observed with the results obtained in both assays. Moreover, no inhibition of the cargo export was observed when the two prototype chalcones 9 and 10 were tested against a XPO1-mutated Jurkat cell line (XPO1C528S), highlighting the importance of the Cys at the NES-binding cleft for inhibition. Finally, their interaction at the molecular level at the NES-binding cleft was studied by applying the computational tool CovDock.

19.
J Org Chem ; 75(6): 1974-81, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20192191

RESUMO

Despite the well-established importance of intermolecular cation-pi interactions in molecular recognition, intramolecular cation-pi interactions have been less studied. Here we describe how the simultaneous presence of an aromatic ring at the 5'-position of an inosine derivative and a positively charged imidazolium ring in the purine base drive the conformation of the nucleoside toward a very major conformer in solution that is stabilized by an intramolecular cation-pi interaction. Therefore, the cation-pi interaction between imidazolium ions and aromatic rings can also be proposed in the design of small molecules where this type of interaction is desirable. The imidazolium ion can be obtained by a simple acidification of the pH of the media. So a simple change in pH can shift the conformational equilibrium from a random to a restricted conformation stabilized by an intramolecular cation-pi interaction. Thus the here described nucleosides can be considered as a new class of pH-dependent conformationally switchable molecules.


Assuntos
Nucleosídeos/química , Teoria Quântica , RNA Mensageiro/química , Concentração de Íons de Hidrogênio , Inosina/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular
20.
Antimicrob Agents Chemother ; 53(11): 4852-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19721061

RESUMO

Alcian Blue (AB), a phthalocyanine derivative, is able to prevent infection by a wide spectrum of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strains in various cell types [T cells, (co)receptor-transfected cells, and peripheral blood mononuclear cells]. With the exception of herpes simplex virus, AB is inactive against a broad variety of other (DNA and RNA) viruses. Time-of-addition studies show that AB prevents HIV-1 infection at the virus entry stage, exactly at the same time as carbohydrate-binding agents do. AB also efficiently prevents fusion between persistently HIV-1-infected HUT-78 cells and uninfected (CD4(+)) lymphocytes, DC-SIGN-directed HIV-1 capture, and subsequent transmission to uninfected (CD4(+)) T lymphocytes. Prolonged passaging of HIV-1 at dose-escalating concentrations of AB resulted in the selection of mutant virus strains in which several N-glycans of the HIV-1 gp120 envelope were deleted and in which positively charged amino acid mutations in both gp120 and gp41 appeared. A mutant virus strain in which four N-glycans were deleted showed a 10-fold decrease in sensitivity to the inhibitory effect of AB. These data suggest that AB is likely endowed with carbohydrate-binding properties and can be considered an important lead compound in the development of novel synthetic nonpeptidic antiviral drugs targeting the glycans of the envelope of HIV.


Assuntos
Azul Alciano/farmacologia , Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , Azul Alciano/química , Azul Alciano/metabolismo , Células Cultivadas , Farmacorresistência Viral , Células Gigantes/efeitos dos fármacos , Glicosilação , Proteína gp120 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , Humanos , Mutação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA