Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Nature ; 622(7984): 754-760, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730999

RESUMO

Single-atom catalysts (SACs) have well-defined active sites, making them of potential interest for organic synthesis1-4. However, the architecture of these mononuclear metal species stabilized on solid supports may not be optimal for catalysing complex molecular transformations owing to restricted spatial environment and electronic quantum states5,6. Here we report a class of heterogeneous geminal-atom catalysts (GACs), which pair single-atom sites in specific coordination and spatial proximity. Regularly separated nitrogen anchoring groups with delocalized π-bonding nature in a polymeric carbon nitride (PCN) host7 permit the coordination of Cu geminal sites with a ground-state separation of about 4 Å at high metal density8. The adaptable coordination of individual Cu sites in GACs enables a cooperative bridge-coupling pathway through dynamic Cu-Cu bonding for diverse C-X (X = C, N, O, S) cross-couplings with a low activation barrier. In situ characterization and quantum-theoretical studies show that such a dynamic process for cross-coupling is triggered by the adsorption of two different reactants at geminal metal sites, rendering homo-coupling unfeasible. These intrinsic advantages of GACs enable the assembly of heterocycles with several coordination sites, sterically congested scaffolds and pharmaceuticals with highly specific and stable activity. Scale-up experiments and translation to continuous flow suggest broad applicability for the manufacturing of fine chemicals.

2.
Nature ; 587(7834): 408-413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208960

RESUMO

The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels1-3. Electrocatalysts accelerate the reaction by facilitating the required electron transfer4, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer8, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9-11 or steady-state assumptions12. However, the charging of catalyst surfaces under bias also affects bond formation and rupture13-15, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.

3.
Environ Sci Technol ; 58(15): 6628-6636, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38497595

RESUMO

Biomass waste-derived engineered biochar for CO2 capture presents a viable route for climate change mitigation and sustainable waste management. However, optimally synthesizing them for enhanced performance is time- and labor-intensive. To address these issues, we devise an active learning strategy to guide and expedite their synthesis with improved CO2 adsorption capacities. Our framework learns from experimental data and recommends optimal synthesis parameters, aiming to maximize the narrow micropore volume of engineered biochar, which exhibits a linear correlation with its CO2 adsorption capacity. We experimentally validate the active learning predictions, and these data are iteratively leveraged for subsequent model training and revalidation, thereby establishing a closed loop. Over three active learning cycles, we synthesized 16 property-specific engineered biochar samples such that the CO2 uptake nearly doubled by the final round. We demonstrate a data-driven workflow to accelerate the development of high-performance engineered biochar with enhanced CO2 uptake and broader applications as a functional material.


Assuntos
Dióxido de Carbono , Aprendizagem Baseada em Problemas , Carvão Vegetal , Adsorção
4.
Chimia (Aarau) ; 78(6): 384-389, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38946410

RESUMO

Curious about how chemistry can contribute to sustainable development? In this overview, we explain the essence of NCCR funding, the research focus and structural goals of NCCR Catalysis, and how these align with the sustainable development goals (SDGs). Additionally, we highlight opportunities for getting involved with our program.

5.
Angew Chem Int Ed Engl ; 63(26): e202318676, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38570864

RESUMO

Chemistry, a vital tool for sustainable development, faces a challenge due to the lack of clear guidance on actionable steps, hindering the optimal adoption of sustainability practices across its diverse facets from discovery to implementation. This Scientific Perspective explores established frameworks and principles, proposing a conciliated set of triple E priorities anchored on Environmental, Economic, and Equity pillars for research and decision making. We outline associated metrics, crucial for quantifying impacts, classifying them according to their focus areas and scales tackled. Emphasizing catalysis as a key driver of sustainable synthesis of chemicals and materials, we exemplify how triple E priorities can practically guide the development and implementation of processes from renewables conversions to complex customized products. We summarize by proposing a roadmap for the community aimed at raising awareness, fostering academia-industry collaboration, and stimulating further advances in sustainable chemical technologies across their broad scope.

6.
Angew Chem Int Ed Engl ; 63(11): e202317526, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38105396

RESUMO

Catalytic hydrogenolysis has the potential to convert high-density polyethylene (HDPE), which comprises about 30 % of plastic waste, into valuable alkanes. Most investigations have focused on increasing activity for lab grade HDPEs displaying low molecular weight, with limited mechanistic understanding of the product distribution. No efficient catalyst is available for consumer grades due to their lower reactivity. This study targets HDPE used in bottle caps, a waste form generated globally at a rate of approximately one million units per hour. Ultrafine ruthenium particles (1 nm) supported on titania (anatase) achieved up to 80 % conversion into light alkanes (C1 -C45 ) under mild conditions (498 K, 20 bar H2 , 4 h) and were reused for three cycles. Small ruthenium nanoparticles were critical to achieving relevant conversions, as activity sharply decreased with particle size. Selectivity commonalities and peculiarities across HDPE grades were disclosed by a reaction modelling approach applied to products. Isomerization cedes to backbone scission as the reaction progresses. Within this trend, low molecular weight favor isomerization whilst high molecular weight favor cleavage. Commercial caps obeyed this trend with decreased activity, anticipating the influence of additives in realistic processing. This study demonstrates effective hydrogenolysis of consumer grade polyethylene and provides selectivity patterns for product control.

7.
Angew Chem Int Ed Engl ; 63(17): e202401060, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38451557

RESUMO

C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates. Our findings reveal the transformative role of CO in MCTH at the low pressures, inducing ketene formation in MCTH and boosting olefin production, confirming the Koch carbonylation step in the initial stages of C1 coupling. We uncover pressure-dependent product distributions driven by CO-induced ketene formation, and its subsequent desorption from the zeolite surface, which is enhanced at low pressure. Inspired by the above results, extension of the co-feeding approach to CH3OH as another simple oxygenate showcases the additional potential for improved catalyst stability in MCTH at ambient pressure.

8.
Angew Chem Int Ed Engl ; 63(20): e202401056, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472115

RESUMO

Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.

9.
J Am Chem Soc ; 145(14): 7910-7917, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36867720

RESUMO

Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH3•, C3H5•) and reactive oxygenates, C2-4 ketenes and C2-3 enols, in ODHP over BN by operando synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO2.

10.
J Am Chem Soc ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924283

RESUMO

A cause of losses in energy and carbon conversion efficiencies during the electrochemical CO2 reduction reaction (eCO2RR) can be attributed to the formation of carbonates (CO32-), which is generally considered to be an electrochemically inert species. Herein, using in situ Raman spectroscopy, liquid chromatography, 1H nuclear magnetic resonance spectroscopy, 13C and deuterium isotope labeling, and density functional theory simulations, we show that carbonate intermediates are adsorbed on a copper electrode during eCO2RR in KHCO3 electrolyte from 0.2 to -1.0 VRHE. These intermediates can be reduced to formate at -0.4 VRHE and more negative potentials. This finding is supported by our observation of formate from the reduction of Cu2(CO3)(OH)2. Pulse electrolysis on a copper electrode immersed in a N2-purged K2CO3 electrolyte was also performed. We found that the carbonate anions therein could be first adsorbed at -0.05 VRHE and then directly reduced to formate at -0.5 VRHE (overpotential of 0.28 V) with a Faradaic efficiency of 0.61%. The nature of the active sites generating the adsorbed carbonate species and the mechanism for the pulse-enabled reduction of carbonate to formate were elucidated. Our findings reveal how carbonates are directly reduced to a high-value product such as formate and open a potential pathway to mitigate carbonate formation during eCO2RR.

11.
Chimia (Aarau) ; 77(3): 132-138, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047816

RESUMO

Understanding the reaction mechanism is critical yet challenging in heterogeneous catalysis. Reactive intermediates, e.g., radicals and ketenes, are short-lived and often evade detection. In this review, we summarize recent developments with operando photoelectron photoion coincidence (PEPICO) spectroscopy as a versatile tool capable of detecting elusive intermediates. PEPICO combines the advantages of mass spectrometry and the isomer-selectivity of threshold photoelectron spectroscopy. Recent applications of PEPICO in understanding catalyst synthesis and catalytic reaction mechanisms involving gaseous and surface-confined radical and ketene chemistry will be summarized.

12.
Chimia (Aarau) ; 77(3): 150-153, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047819

RESUMO

Intense efforts have been devoted to developing green and blue centralised Haber-Bosch processes (gHB and bHB, respectively), but the feasibility of a decentralised and sustainable scheme has yet to be assessed. Here we reveal the conditions under which small-scale systems based on the electrocatalytic reduction of nitrogen (eN2R) powered by photovoltaic energy (NH3-leaf) could become a competitive technology in terms of environmental criteria. To this end, we calculated energy efficiency targets based on solar irradiation atlases to guide research in the incipient eN2R field. Even under this germinal state, the NH3-leaf technology would compete favourably in sunny locations relative to the business-as-usual production scenario. The disclosed sustainability potential of NH3-leaf makes it a strong ally of gHB toward a non-fossil ammonia production.

13.
Chimia (Aarau) ; 77(3): 127-131, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047815

RESUMO

Scaling up syntheses from mg to kg quantities is a complex endeavor. Besides adapting laboratory protocols to industrial processes and equipment and thorough safety assessments, much attention is paid to the reduction of the process' environmental impact. For processes including transition metal catalyzed steps, e.g. cross-coupling chemistry, this impact strongly depends on the identity of the metal used. As such, a key approach is the replacement of single-use with reusable heterogeneous catalysts. Transition metal single-atom heterogeneous catalysts (SAC), a novel class of catalytic materials, might exhibit all the necessary properties to step up to this task. This article shall discuss current applications of SAC in cross-coupling chemistry from the point of a process chemist and shed light on the NCCR Catalysis contribution to the field. Investigations of the stability-activity-selectivity relationship of SACs in combination with early-stage life-cycle assessments (LCA) of potential processes lay the foundation for large-scale application tailored catalyst synthesis. Ultimately, prevailing challenges are highlighted, which need to be addressed in future research.

14.
Angew Chem Int Ed Engl ; 62(42): e202306563, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395462

RESUMO

Ternary Pd-In2 O3 /ZrO2 catalysts exhibit technological potential for CO2 -based methanol synthesis, but developing scalable systems and comprehending complex dynamic behaviors of the active phase, promoter, and carrier are key for achieving high productivity. Here, we show that the structure of Pd-In2 O3 /ZrO2 systems prepared by wet impregnation evolves under CO2 hydrogenation conditions into a selective and stable architecture, independent of the order of addition of Pd and In phases on the zirconia carrier. Detailed operando characterization and simulations reveal a rapid restructuring driven by the metal-metal oxide interaction energetics. The proximity of InPdx alloy particles decorated by InOx layers in the resulting architecture prevents performance losses associated with Pd sintering. The findings highlight the crucial role of reaction-induced restructuring in complex CO2 hydrogenation catalysts and offer insights into the optimal integration of acid-base and redox functions for practical implementation.

15.
J Am Chem Soc ; 144(18): 8018-8029, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35333043

RESUMO

Single-atom catalytic sites may have existed in all supported transition metal catalysts since their first application. Yet, interest in the design of single-atom heterogeneous catalysts (SACs) only really grew when advances in transmission electron microscopy (TEM) permitted direct confirmation of metal site isolation. While atomic-resolution imaging remains a central characterization tool, poor statistical significance, reproducibility, and interoperability limit its scope for deriving robust characteristics about these frontier catalytic materials. Here, we introduce a customized deep-learning method for automated atom detection in image analysis, a rate-limiting step toward high-throughput TEM. Platinum atoms stabilized on a functionalized carbon support with a challenging irregular three-dimensional morphology serve as a practically relevant test system with promising scope in thermo- and electrochemical applications. The model detects over 20,000 atomic positions for the statistical analysis of important properties for establishing structure-performance relations over nanostructured catalysts, like the surface density, proximity, clustering extent, and dispersion uniformity of supported metal species. Good performance obtained on direct application of the model to an iron SAC based on carbon nitride demonstrates its generalizability for single-atom detection on carbon-related materials. The approach establishes a route to integrate artificial intelligence into routine TEM workflows. It accelerates image processing times by orders of magnitude and reduces human bias by providing an uncertainty analysis that is not readily quantifiable in manual atom identification, improving standardization and scalability.


Assuntos
Inteligência Artificial , Carbono , Humanos , Microscopia Eletrônica de Transmissão , Platina , Reprodutibilidade dos Testes
16.
Small ; 18(15): e2200224, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224866

RESUMO

The introduction of a foreign metal atom in the coordination environment of single-atom catalysts constitutes an exciting frontier of active-site engineering, generating bimetallic low-nuclearity catalysts often exhibiting unique catalytic synergies. To date, the exploration of their full scope is thwarted by (i) the lack of synthetic techniques with control over intermetallic coordination, and (ii) the challenging characterization of these materials. Herein, carbon-host functionalization is presented as a strategy to selectively generate Au-Ru dimers and isolated sites by simple incipient wetness impregnation, as corroborated by careful X-ray absorption spectroscopy analysis. The distinct catalytic fingerprints are unveiled via the hydrogen evolution reaction, employed as a probe for proton adsorption properties. Intriguingly, the virtually inactive Au atoms enhance the reaction kinetics of their Ru counterparts already when spatially isolated, by shifting the proton adsorption free energy closer to neutrality. Remarkably, the effect is magnified by a factor of 2 in dimers. These results exemplify the relevance of controlling intermetallic coordination for the rational design of bimetallic low-nuclearity catalysts.


Assuntos
Carbono , Prótons , Adsorção , Catálise , Hidrogênio/química
17.
Small ; 18(33): e2202080, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35678101

RESUMO

The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced 15 N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides.

18.
Chem Rev ; 120(21): 11703-11809, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33085890

RESUMO

Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.

20.
Chem Soc Rev ; 50(5): 2984-3012, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33624659

RESUMO

Natural gas is widely considered as the key feedstock to enable the transition from the oil to the renewables era. Despite its vast reserves, the use of this resource to produce energy and chemicals does not match its full potential. The main reason lies in the nature of its wells, which are often found in remote locations around the globe, rendering access and transportation challenging. To aid this development, several technologies for energy and energy carrier production have been developed, all of which have in common the goal of upgrading natural gas directly at the source of extraction. Following this direction, this review firstly analyses the advances in process design towards decentralised generation of electricity and of liquefied natural gas. Subsequently, recent efforts in progress made in catalysed alkane transformations using heterogeneous catalysts are reviewed for small-scale chemicals and fuels production. The presented analysis identifies that techno-economic and life-cycle assessments should be widely performed to enable proper technological benchmarking of these technologies. The integration of these multidisciplinary fields is key to foster synergies between researchers in the areas of decentralised energy and energy carrier generation in view of developing effective and efficient processes for valorising natural gas directly on-site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA