Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625940

RESUMO

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Ligação Proteica , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
2.
J Biol Chem ; 299(4): 103064, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841480

RESUMO

Gßγ subunits mediate many different signaling processes in various compartments of the cell, including the nucleus. To gain insight into the functions of nuclear Gßγ signaling, we investigated the functional role of Gßγ signaling in the regulation of GPCR-mediated gene expression in primary rat neonatal cardiac fibroblasts. We identified a novel, negative, regulatory role for the Gß1γ dimer in the fibrotic response. Depletion of Gß1 led to derepression of the fibrotic response at the mRNA and protein levels under basal conditions and an enhanced fibrotic response after sustained stimulation of the angiotensin II type I receptor. Our genome-wide chromatin immunoprecipitation experiments revealed that Gß1 colocalized and interacted with RNA polymerase II on fibrotic genes in an angiotensin II-dependent manner. Additionally, blocking transcription with inhibitors of Cdk9 prevented association of Gßγ with transcription complexes. Together, our findings suggest that Gß1γ is a novel transcriptional regulator of the fibrotic response that may act to restrict fibrosis to conditions of sustained fibrotic signaling. Our work expands the role for Gßγ signaling in cardiac fibrosis and may have broad implications for the role of nuclear Gßγ signaling in other cell types.


Assuntos
Fibroblastos , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Regulação da Expressão Gênica , Miocárdio , RNA Polimerase II , Transcrição Gênica , Animais , Ratos , Angiotensina II/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais/fisiologia , Miocárdio/citologia , Miocárdio/patologia , Fibrose
3.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732215

RESUMO

We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gß1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gß1. Our work demonstrates a unique relationship between KCTD proteins and Gß1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.


Assuntos
Proliferação de Células , Canais de Potássio , Humanos , Proliferação de Células/genética , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Methods ; 203: 447-464, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34933120

RESUMO

In the heart, left ventricular hypertrophy is initially an adaptive mechanism that increases wall thickness to preserve normal cardiac output and function in the face of coronary artery disease or hypertension. Cardiac hypertrophy develops in response to pressure and volume overload but can also be seen in inherited cardiomyopathies. As the wall thickens, it becomes stiffer impairing the distribution of oxygenated blood to the rest of the body. With complex cellular signalling and transcriptional networks involved in the establishment of the hypertrophic state, several model systems have been developed to better understand the molecular drivers of disease. Immortalized cardiomyocyte cell lines, primary rodent and larger animal models have all helped understand the pathological mechanisms underlying cardiac hypertrophy. Induced pluripotent stem cell-derived cardiomyocytes are also used and have the additional benefit of providing access to human samples with direct disease relevance as when generated from patients suffering from hypertrophic cardiomyopathies. Here, we briefly review in vitro and in vivo model systems that have been used to model hypertrophy and provide detailed methods to isolate primary neonatal rat cardiomyocytes as well as to generate cardiomyocytes from human iPSCs. We also describe how to model hypertrophy in a "dish" using gene expression analysis and immunofluorescence combined with automated high-content imaging.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
5.
J Biol Chem ; 292(13): 5443-5456, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28213525

RESUMO

Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gαq, Gα11, Gα12, and Gα13 or ß-arrestins, we showed that Gαq and Gα11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of ß-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or ß-arrestin.


Assuntos
Receptor Tipo 1 de Angiotensina/química , Angiotensina II/metabolismo , Engenharia Celular/métodos , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Métodos , Conformação Proteica , Transdução de Sinais , beta-Arrestinas/metabolismo
6.
J Biol Chem ; 292(29): 12139-12152, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28584054

RESUMO

G protein-coupled receptors (GPCRs) are conformationally dynamic proteins transmitting ligand-encoded signals in multiple ways. This transmission is highly complex and achieved through induction of distinct GPCR conformations, which preferentially drive specific receptor-mediated signaling events. This conformational capacity can be further enlarged via allosteric effects between dimers, warranting further study of these effects. Using GPCR conformation-sensitive biosensors, we investigated allosterically induced conformational changes in the recently reported F prostanoid (FP)/angiotensin II type 1 receptor (AT1R) heterodimer. Ligand occupancy of the AT1R induced distinct conformational changes in FP compared with those driven by PGF2α in bioluminescence resonance energy transfer (BRET)-based FP biosensors engineered with Renilla luciferase (RLuc) as an energy donor in the C-tail and fluorescein arsenical hairpin binder (FlAsH)-labeled acceptors at different positions in the intracellular loops. We also found that this allosteric communication is mediated through Gαq and may also involve proximal (phospholipase C) but not distal (protein kinase C) signaling partners. Interestingly, ß-arrestin-biased AT1R agonists could also transmit a Gαq-dependent signal to FP without activation of downstream Gαq signaling. This transmission of information was specific to the AT1R/FP complex, as activation of Gαq by the oxytocin receptor did not recapitulate the same phenomenon. Finally, information flow was asymmetric in the sense that FP activation had negligible effects on AT1R-based conformational biosensors. The identification of partner-induced GPCR conformations may help identify novel allosteric effects when investigating multiprotein receptor signaling complexes.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Modelos Moleculares , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Regulação Alostérica , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Técnicas Biossensoriais , Membrana Celular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Ligantes , Luciferases de Renilla/química , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C/metabolismo , Multimerização Proteica , Receptor Tipo 1 de Angiotensina/agonistas , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/química , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/química , Receptores de Prostaglandina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
7.
Methods ; 92: 19-35, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26210401

RESUMO

Ion channels play a vital role in numerous physiological functions and drugs that target them are actively pursued for development of novel therapeutic agents. Here we report a means for monitoring in real time the conformational changes undergone by channel proteins upon exposure to pharmacological stimuli. The approach relies on tracking structural rearrangements by monitoring changes in bioluminescence energy transfer (BRET). To provide proof of principle we have worked with Kir3 neuronal channels producing 10 different constructs which were combined into 17 donor-acceptor BRET pairs. Among these combinations, pairs bearing the donor Nano-Luc (NLuc) at the C-terminal end of Kir3.2 subunits and the FlAsH acceptor at the N-terminal end (NT) or the interfacial helix (N70) of Kir3.1 subunits were identified as potential tools. These pairs displayed significant changes in energy transfer upon activation with direct channel ligands or via stimulation of G protein-coupled receptors. Conformational changes associated with channel activation followed similar kinetics as channel currents. Dose response curves generated by different agonists in FlAsH-BRET assays displayed similar rank order of potency as those obtained with conventional BRET readouts of G protein activation and ion flux assays. Conformational biosensors as the ones reported herein should prove a valuable complement to other methodologies currently used in channel drug discovery.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Técnicas Biossensoriais/métodos , Desenho de Fármacos , Fluoresceína/síntese química , Fluoresceína/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Analgésicos Opioides/síntese química , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Relação Dose-Resposta a Droga , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Camundongos , Conformação Proteica
8.
Methods ; 92: 11-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25962643

RESUMO

Ligand-biased signaling is starting to have significant impact on drug discovery programs in the pharmaceutical industry and has reinvigorated our understanding of pharmacological efficacy. As such, many investigators and screening campaigns are now being directed at a larger section of the signaling responses downstream of an individual G protein-coupled receptor. Many biosensor-based platforms have been developed to capture signaling signatures. Despite our growing ability to use such signaling signatures, we remain hampered by the fact that signaling signatures may be particular to an individual cell type and thus our platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. Here, we provide a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin arsenical dyes engineered into different positions in intracellular loop 3 of FP, the receptor for PGF2α. We discuss the design and optimization of such sensors for orthosteric and allosteric ligands.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Técnicas Biossensoriais/métodos , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Receptores Acoplados a Proteínas G/química , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Sequência de Aminoácidos , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Luciferases de Renilla/síntese química , Luciferases de Renilla/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Receptor A2A de Adenosina/análise , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
9.
J Biol Chem ; 290(5): 3137-48, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512374

RESUMO

The angiotensin II type I (AT1R) and the prostaglandin F2α (PGF2α) F prostanoid (FP) receptors are both potent regulators of blood pressure. Physiological interplay between AT1R and FP has been described. Abdominal aortic ring contraction experiments revealed that PGF2α-dependent activation of FP potentiated angiotensin II-induced contraction, whereas FP antagonists had the opposite effect. Similarly, PGF2α-mediated vasoconstriction was symmetrically regulated by co-treatment with AT1R agonist and antagonist. The underlying canonical Gαq signaling via production of inositol phosphates mediated by each receptor was also regulated by antagonists for the other receptor. However, binding to their respective agonists, regulation of receptor-mediated MAPK activation and vascular smooth muscle cell growth were differentially or asymmetrically regulated depending on how each of the two receptors were occupied by either agonist or antagonist. Physical interactions between these receptors have never been reported, and here we show that AT1R and FP form heterodimeric complexes in both HEK 293 and vascular smooth muscle cells. These findings imply that formation of the AT1R/FP dimer creates a novel allosteric signaling unit that shows symmetrical and asymmetrical signaling behavior, depending on the outcome measured. AT1R/FP dimers may thus be important in the regulation of blood pressure.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismo , Regulação Alostérica/fisiologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Ratos , Transdução de Sinais/fisiologia
10.
J Physiol ; 593(3): 521-39, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25433071

RESUMO

KEY POINTS: The renin-angiotensin system plays a key role in cardiovascular physiology and its overactivation has been implicated in the pathogenesis of several major cardiovascular diseases. There is growing evidence that angiotensin II (Ang-II) may function as an intracellular peptide to activate intracellular/nuclear receptors and their downstream signalling effectors independently of cell surface receptors. Current methods used to study intracrine Ang-II signalling are limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we present novel photoreleasable Ang-II analogues used to probe intracellular actions with spatial and temporal precision. The photorelease of intracellular Ang-II causes nuclear and cytosolic calcium mobilization and initiates the de novo synthesis of RNA in cardiac cells, demonstrating the application of the method. ABSTRACT: Several lines of evidence suggest that intracellular angiotensin II (Ang-II) contributes to the regulation of cardiac contractility, renal salt reabsorption, vascular tone and metabolism; however, work on intracrine Ang-II signalling has been limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we aimed to synthesize and characterize cell-permeant Ang-II analogues that are inactive without uncaging, but release active Ang-II upon exposure to a flash of UV-light, and act as novel tools for use in the study of intracrine Ang-II physiology. We prepared three novel caged Ang-II analogues, [Tyr(DMNB)(4)]Ang-II, Ang-II-ODMNB and [Tyr(DMNB)(4)]Ang-II-ODMNB, based upon the incorporation of the photolabile moiety 4,5-dimethoxy-2-nitrobenzyl (DMNB). Compared to Ang-II, the caged Ang-II analogues showed 2-3 orders of magnitude reduced affinity toward both angiotensin type-1 (AT1R) and type-2 (AT2R) receptors in competition binding assays, and greatly-reduced potency in contraction assays of rat thoracic aorta. After receiving UV-irradiation, all three caged Ang-II analogues released Ang-II and potently induced the contraction of rat thoracic aorta. [Tyr(DMNB)(4)]Ang-II showed the most rapid photolysis upon UV-irradiation and was the focus of subsequent characterization. Whereas Ang-II and photolysed [Tyr(DMNB)(4)]Ang-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R), caged [Tyr(DMNB)(4)]Ang-II did not. Cellular uptake of [Tyr(DMNB)(4)]Ang-II was 4-fold greater than that of Ang-II and significantly greater than uptake driven by the positive-control HIV TAT(48-60) peptide. Intracellular photolysis of [Tyr(DMNB)(4)]Ang-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n), and initiated 18S rRNA and nuclear factor kappa B mRNA synthesis in adult cardiac cells. We conclude that caged Ang-II analogues represent powerful new tools for use in the selective study of intracrine signalling via Ang-II.


Assuntos
Angiotensina II/análogos & derivados , Sinalização do Cálcio , Receptores de Angiotensina/metabolismo , Raios Ultravioleta , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Fluoresceínas/efeitos da radiação , Corantes Fluorescentes/efeitos da radiação , Células HEK293 , Humanos , Masculino , Microscopia de Fluorescência/métodos , Ratos , Ratos Sprague-Dawley , Receptores de Angiotensina/agonistas
11.
Cell Signal ; 116: 111056, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38262555

RESUMO

Despite the observation of synergistic interactions between the urotensinergic and angiotensinergic systems, the interplay between the urotensin II receptor (hUT) and the angiotensin II type 1 receptor (hAT1R) in regulating cellular signaling remains incompletely understood. Notably, the putative interaction between hUT and hAT1R could engender reciprocal allosteric modulation of their signaling signatures, defining a unique role for these complexes in cardiovascular physiology and pathophysiology. Using a combination of co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and FlAsH BRET-based conformational biosensors, we first demonstrated the physical interaction between hUT and hAT1R. Next, to analyze how this functional interaction regulated proximal and distal hUT- and hAT1R-associated signaling pathways, we used BRET-based signaling biosensors and western blots to profile pathway-specific signaling in HEK 293 cells expressing hUT, hAT1R or both. We observed that hUT-hAT1R heterodimers triggered distinct signaling outcomes compared to their respective parent receptors alone. Notably, co-transfection of hUT and hAT1R has no impact on hUII-induced Gq activation but significantly reduced the potency and efficacy of Ang II to mediate Gq activation. Interestingly, URP, the second hUT endogenous ligand, produce a distinct signaling signature compared to hUII at hUT-hAT1R. Our results therefore suggest that assembly of hUT with hAT1R might be important for allosteric modulation of outcomes associated with specific hardwired signaling complexes in healthy and disease states. Altogether, our work, which potentially explains the interplay observed in native cells and tissues, validates such complexes as potential targets to promote the design of compounds that can modulate heterodimer function selectively.


Assuntos
Receptor Tipo 1 de Angiotensina , Urotensinas , Humanos , Angiotensina II , Células HEK293
12.
Subcell Biochem ; 63: 67-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23161133

RESUMO

In almost 16 years since the word "dimer" was used in a publication to describe the organization of G protein-coupled receptors (GPCRs), a large number of studies have since weighed in on this notion. Are native, functional GPCRs monomers, dimers or as some would suggest even higher order structures? Here, we review some of the latest evidence regarding the organization of these receptors in both homo- and hetero-oligomeric formats, with a particular focus on ß-adrenergic receptors. This is particularly important for understanding the allosteric nature of receptor/receptor interactions. It is likely that, over the course of evolution, mechanisms have come into play using all of the possible variations in receptor/receptor stoichiometry, depending on the cell and the physiological context in question. Finally, we provide some data that suggests that higher order structures of GPCRs, as with dimers themselves are probably assembled in the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Mapas de Interação de Proteínas , Multimerização Proteica
13.
Sci Rep ; 13(1): 12248, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507481

RESUMO

The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Perfilação da Expressão Gênica , Diferenciação Celular/genética
14.
J Biol Chem ; 285(33): 25624-36, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20551320

RESUMO

The prostaglandin F2alpha (PGF2alpha) receptor (FP) is a key regulator of parturition and a target for pharmacological management of preterm labor. However, an incomplete understanding of signaling pathways regulating myometrial contraction hinders the development of improved therapeutics. Here we used a peptidomimetic inhibitor of parturition in mice, PDC113.824, whose structure was based on the NH(2)-terminal region of the second extracellular loop of FP receptor, to gain mechanistic insight underlying FP receptor-mediated cell responses in the context of parturition. We show that PDC113.824 not only delayed normal parturition in mice but also that it inhibited both PGF2alpha- and lipopolysaccharide-induced preterm labor. PDC113.824 inhibited PGF2alpha-mediated, G(alpha)(12)-dependent activation of the Rho/ROCK signaling pathways, actin remodeling, and contraction of human myometrial cells likely by acting as a non-competitive, allosteric modulator of PGF2alpha binding. In contrast to its negative allosteric modulating effects on Rho/ROCK signaling, PDC113.824 acted as a positive allosteric modulator on PGF2alpha-mediated protein kinase C and ERK1/2 signaling. This bias in receptor-dependent signaling was explained by an increase in FP receptor coupling to G(alpha)(q), at the expense of coupling to G(alpha)(12). Our findings regarding the allosteric and biased nature of PDC113.824 offer new mechanistic insights into FP receptor signaling relevant to parturition and suggest novel therapeutic opportunities for the development of new tocolytic drugs.


Assuntos
Dinoprosta/metabolismo , Parto/efeitos dos fármacos , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular , Feminino , Imunofluorescência , Humanos , Camundongos , Trabalho de Parto Prematuro/induzido quimicamente , Trabalho de Parto Prematuro/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/uso terapêutico , Gravidez , Proteína Quinase C/metabolismo
15.
J Mol Neurosci ; 38(1): 67-79, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19052921

RESUMO

In the current model of gamma-aminobutyric acid (GABA) B receptor function, there is a requirement for GABA-B(1/2) heterodimerisation for targetting to the cell surface. However, different lines of evidence suggest that the GABA-B(1) subunit can form a functional receptor in the absence of GABA-B(2). We observed coupling of endogenous GABA-B(1) receptors in the DI-TNC1 glial cell line to the ERK pathway in response to baclofen even though these cells do not express GABA-B(2). GABA-B(1A) receptors were also able to mediate a rapid, transient, and dose-dependent activation of the ERK1/2 MAP kinase pathway when transfected alone into HEK 293 cells. The response was abolished by G(i/o) and MEK inhibition, potentiated by inhibitors of phospholipase C and protein kinase C and did not involve PI-3-kinase activity. Finally, using bioluminescence resonance energy transfer and co-immunoprecipitation, we show the existence of homodimeric GABA-B(1A) receptors in transfected HEK293 cells. Altogether, our observations show that GABA-B(1A) receptors are able to activate the ERK1/2 pathway despite the absence of surface targetting partner GABA-B(2) in both HEK 293 cells and the DI-TNC1 cell line.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de GABA-B/metabolismo , Animais , Baclofeno/farmacologia , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , GABAérgicos/farmacologia , Agonistas GABAérgicos/farmacologia , Agonistas dos Receptores de GABA-B , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Toxina Pertussis/farmacologia , Fosforilação , Multimerização Proteica , Ratos , Ácido gama-Aminobutírico/farmacologia
16.
Methods ; 45(3): 214-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18586102

RESUMO

A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100A of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Complexos Multiproteicos/análise , Proteínas Recombinantes de Fusão/análise , Adenilil Ciclases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioensaio/métodos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Luciferases/análise , Luciferases/genética , Luciferases/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Plasmídeos , Mapeamento de Interação de Proteínas/métodos , Multimerização Proteica , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação , Projetos de Pesquisa , Espectrometria de Fluorescência/métodos , Transfecção
17.
Cell Signal ; 18(4): 479-87, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15970427

RESUMO

The constitutive commitment of neutrophils to apoptosis is a key process for the control and resolution of inflammation and it can be delayed by various inflammatory mediators including leukotriene B4 (LTB4). The mechanisms by which LTB4 contributes to neutrophil survival are still unclear and the present work aims at identifying intracellular pathways underlying this effect. Inhibition of human neutrophil apoptosis by LTB4 was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and by the specific MEK inhibitor PD98059. In contrast, inhibitors of p38 MAPK, Jak2/3 and Src did not hinder the anti-apoptotic effect of LTB4. We also investigated the effects of members of the Bcl-2 family as they play a crucial role in the regulation of programmed cell death. When neutrophils were incubated with LTB4 for 1 to 6 h, the mRNA levels of the anti-apoptotic protein Mcl-1 were upregulated approximately 2-fold, while those of the pro-apoptotic protein Bax were downregulated 3- to 4-fold, as determined by real-time PCR. Accordingly, Western blot analysis revealed that the expression of Mcl-1 was upregulated in presence of LTB4, while flow cytometric analysis revealed that Bax protein was downregulated. Furthermore, the modulatory effects of LTB4 on Mcl-1 and Bax proteins were abolished in the presence of either wortmannin or PD98059. Taken together, these results demonstrate the participation of PI3-K and MEK/ERK kinases, as well as regulatory apoptotic proteins such as Mcl-1 and Bax, in the anti-apoptotic effects of LTB4 in human neutrophils.


Assuntos
Apoptose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Leucotrieno B4/farmacologia , Proteínas de Neoplasias/fisiologia , Neutrófilos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Androstadienos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Leucotrieno B4/antagonistas & inibidores , Leucotrieno B4/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas de Neoplasias/genética , Neutrófilos/citologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Valores de Referência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Tempo , Wortmanina , Proteína X Associada a bcl-2/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-28439254

RESUMO

A number of studies have profiled G protein-coupled receptor (GPCR) conformation using fluorescent biaresenical hairpin binders (FlAsH) as acceptors for BRET or FRET. These conformation-sensitive biosensors allow reporting of movements occurring on the intracellular surface of a receptor to investigate mechanisms of receptor activation and function. Here, we generated eight FlAsH-BRET-based biosensors within the sequence of the ß2-adrenergic receptor (ß2AR) and compared agonist-induced responses to the angiotensin II receptor type I (AT1R) and the prostaglandin F2α receptor (FP). Although all three receptors had FlAsH-binding sequences engineered into the third intracellular loops and carboxyl-terminal domain, both the magnitude and kinetics of the BRET responses to ligand were receptor-specific. Biosensors in ICL3 of both the AT1R and FP responded robustly when stimulated with their respective full agonists as opposed to the ß2AR where responses in the third intracellular loop were weak and transient when engaged by isoproterenol. C-tail sensors responses were more robust in the ß2AR and AT1R but not in FP. Even though GPCRs share the heptahelical topology and are expressed in the same cellular background, different receptors have unique conformational fingerprints.

19.
Cell Signal ; 30: 50-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27887991

RESUMO

GPCRs form signalling complexes with other receptors as part of dimers, G proteins and effector partners. A proteomic screen to identify proteins that associate with the ß2-adrenergic receptor (ß2AR) identified many of components of the Endoplasmic-Reticulum-Associated Degradation (ERAD) quality control system [1], including the valosin-containing protein (VCP/p97). Here, we validated the interaction of VCP with co-expressed FLAG-ß2AR, demonstrating, using an inducible expression system, that the interaction of FLAG-ß2AR and VCP is not an artifact of overexpression of the ß2AR per se. We knocked down VCP and noted that levels of FLAG-ß2AR were increased in cells with lower VCP levels. This increase in the level of FLAG-ß2AR did not lead to an increase in the level of functional receptor observed at the cell surface. Similarly, inhibition of the proteasome lead to a dramatic increase in the abundance of TAP-ß2AR, while cellular responses again remained unchanged. Taken together, our data suggests that a substantial proportion of the ß2AR produced is non-functional and VCP plays a key role in the maturation and trafficking of the ß2AR as part of the ERAD quality control process.


Assuntos
Biossíntese de Proteínas , Receptores Adrenérgicos beta 2/biossíntese , Proteína com Valosina/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
20.
Cell Signal ; 28(5): 401-411, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26854614

RESUMO

Cellular signaling involves coordinated regulation of many events. Scaffolding proteins are crucial regulators of cellular signaling, because they are able to affect numerous events by coordinating specific interactions among multiple protein partners in the same pathway. Scaffolding proteins often contain intrinsically disordered regions (IDR) that facilitate the formation and function of distinct protein complexes. We show that PPIP5K1 contains an unusually long and evolutionarily conserved IDR. To investigate the biological role(s) of this domain, we identified interacting proteins using affinity purification coupled with mass spectrometry. Here, we report that PPIP5K1 is associated with a network of proteins that regulate vesicle-mediated transport. We further identified exocyst complex component 1 as a direct interactor with the IDR of PPIP5K1. Additionally, we report that knockdown of PPIP5K1 decreases motility of HeLa cells in a wound-healing assay. These results suggest that PPIP5K1 might play an important role in regulating function of exocyst complex in establishing cellular polarity and directional migration of cells.


Assuntos
Movimento Celular , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Células HEK293 , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/fisiologia , Espectrometria de Massas , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Domínios Proteicos , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA