Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Cereb Cortex ; 27(2): 1253-1269, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733533

RESUMO

During the development of the mammalian neocortex, the generation of neurons by neural progenitors and their migration to the final position are closely coordinated. The highly polarized radial glial cells (RGCs) serve both as progenitor cells to generate neurons and as support for the migration of these neurons. After their generation, neurons transiently assume a multipolar morphology before they polarize and begin their migration along the RGCs. Here, we show that Rap1 GTPases perform essential functions for cortical organization as master regulators of cell polarity. Conditional deletion of Rap1 GTPases leads to a complete loss of cortical lamination. In RGCs, Rap1 GTPases are required to maintain their polarized organization. In newborn neurons, the loss of Rap1 GTPases prevents the formation of axons and leading processes and thereby interferes with radial migration. Taken together, the loss of RGC and neuronal polarity results in the disruption of cortical organization.


Assuntos
Polaridade Celular/fisiologia , Neocórtex/crescimento & desenvolvimento , Neurogênese/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Movimento Celular/fisiologia , Células Ependimogliais/fisiologia , Camundongos , Neocórtex/citologia , Neocórtex/enzimologia , Neuroglia/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia
4.
J Cell Sci ; 127(Pt 16): 3463-76, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928906

RESUMO

The morphology and polarized growth of cells depend on pathways that control the asymmetric distribution of regulatory factors. The evolutionarily conserved Ndr kinases play important roles in cell polarity and morphogenesis in yeast and invertebrates but it is unclear whether they perform a similar function in mammalian cells. Here, we analyze the function of mammalian Ndr1 and Ndr2 (also known as STK38 or STK38L, respectively) in the establishment of polarity in neurons. We show that they act downstream of the tumor suppressor Rassf5 and upstream of the polarity protein Par3 (also known as PARD3). Rassf5 and Ndr1 or Ndr2 are required during the polarization of hippocampal neurons to prevent the formation of supernumerary axons. Mechanistically, the Ndr kinases act by phosphorylating Par3 at Ser383 to inhibit its interaction with dynein, thereby polarizing the distribution of Par3 and reinforcing axon specification. Our results identify a novel Rassf5-Ndr-Par3 signaling cascade that regulates the transport of Par3 during the establishment of neuronal polarity. Their role in neuronal polarity suggests that Ndr kinases perform a conserved function as regulators of cell polarity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Polaridade Celular , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/enzimologia , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
5.
Biol Chem ; 397(10): 1055-69, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27186679

RESUMO

Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.


Assuntos
Neurônios/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Mamíferos , Neurônios/citologia , Transporte Proteico
6.
Exp Cell Res ; 324(1): 84-91, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690281

RESUMO

Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1-plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Choque Térmico/fisiologia , Neuritos/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Camundongos , Microtúbulos/metabolismo , Células PC12 , Ligação Proteica , Ratos , Transdução de Sinais/fisiologia
7.
Biol Chem ; 395(5): 465-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24391191

RESUMO

The complex mammalian cortex develops from a simple neuroepithelium through the proliferation of neuronal progenitors, their asymmetric division and cell migration. Newly generated neurons transiently assume a multipolar morphology before they polarize to form a trailing axon and a leading process that is required for their radial migration. The polarization and migration events during cortical development are under the control of multiple signaling cascades that coordinate the different cellular processes involved in neuronal differentiation. GTPases perform essential functions at different stages of neuronal development as central components of these pathways. They have been widely studied using cell lines and primary neuronal cultures but their physiological function in vivo still remains to be explored in many cases. Here we review the function of GTPases that have been studied genetically by the analysis of the embryonic nervous system in knockout mice. The phenotype of these mutants has highlighted the importance of GTPases for different steps of development by orchestrating cytoskeletal rearrangements and neuronal polarization.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neurônios/citologia , Animais , Diferenciação Celular , Camundongos , Camundongos Knockout , Neocórtex , Transdução de Sinais
8.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438249

RESUMO

During their differentiation, neurons establish a highly polarized morphology by forming axons and dendrites. Cortical and hippocampal neurons initially extend several short neurites that all have the potential to become an axon. One of these neurites is then selected as the axon by a combination of positive and negative feedback signals that promote axon formation and prevent the remaining neurites from developing into axons. Here, we show that Pip5k1γ is required for the formation of a single axon as a negative feedback signal that regulates C3G and Rap1 through the generation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Impairing the function of Pip5k1γ results in a hyper-activation of the Fyn/C3G/Rap1 pathway, which induces the formation of supernumerary axons. Application of a hyper-osmotic shock to modulate membrane tension has a similar effect, increasing Rap1 activity and inducing the formation of supernumerary axons. In both cases, the induction of supernumerary axons can be reverted by expressing constitutively active Pip5k. Our results show that PI(4,5)P2-dependent membrane properties limit the activity of C3G and Rap1 to ensure the extension of a single axon.


Assuntos
Axônios , Neuritos , Neurônios , Fosforilação , Hipocampo
9.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36543541

RESUMO

The highly conserved GTPase Cdc42 is an essential regulator of cell polarity and promotes exocytosis through the exocyst complex in budding yeast and Drosophila In mammals, this function is performed by the closely related GTPase TC10, whereas mammalian Cdc42 does not interact with the exocyst. Axon formation is facilitated by the exocyst complex that tethers vesicles before their fusion to expand the plasma membrane. This function depends on the recruitment of the Exo70 subunit to the plasma membrane. Alternative splicing generates two Cdc42 isoforms that differ in their C-terminal 10 amino acids. Our results identify an isoform-specific function of Cdc42 in neurons. We show that the brain-specific Cdc42b isoform, in contrast to the ubiquitous isoform Cdc42u, can interact with Exo70. Inactivation of Arhgef7 or Cdc42b interferes with the exocytosis of post-Golgi vesicles in the growth cone. Cdc42b regulates exocytosis and axon formation downstream of its activator Arhgef7. Thus, the function of Cdc42 in regulating exocytosis is conserved in mammals but specific to one isoform.


Assuntos
Axônios , Proteínas de Transporte Vesicular , Animais , Proteínas de Transporte Vesicular/metabolismo , Axônios/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo
10.
J Cell Sci ; 123(Pt 2): 286-94, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026642

RESUMO

Wee1 is well characterized as a cell-cycle checkpoint kinase that regulates the entry into mitosis in dividing cells. Here we identify a novel function of Wee1 in postmitotic neurons during the establishment of distinct axonal and dendritic compartments, which is an essential step during neuronal development. Wee1 is expressed in unpolarized neurons but is downregulated after neurons have extended an axon. Suppression of Wee1 impairs the formation of minor neurites but does not interfere with axon formation. However, neuronal polarity is disrupted when neurons fail to downregulate Wee1. The kinases SadA and SadB (Sad kinases) phosphorylate Wee1 and are required to initiate its downregulation in polarized neurons. Wee1 expression persists in neurons that are deficient in SadA and SadB and disrupts neuronal polarity. Knockdown of Wee1 rescues the Sada(-/-);Sadb(-/-) mutant phenotype and restores normal polarity in these neurons. Our results demonstrate that the regulation of Wee1 by SadA and SadB kinases is essential for the differentiation of polarized neurons.


Assuntos
Ciclo Celular , Polaridade Celular , Neurônios/citologia , Neurônios/enzimologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Regulação para Baixo/genética , Técnicas de Inativação de Genes , Humanos , Camundongos , Mitose , Neuritos/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Fenótipo , Fosforilação , Fosfosserina/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Ratos
12.
Math Biosci ; 338: 108632, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087317

RESUMO

The processes that determine the establishment of the complex morphology of neurons during development are still poorly understood. Here, we focus on the question how a difference in the length of neurites affects vesicle transport. We performed live imaging experiments and present a lattice-based model to gain a deeper theoretical understanding of intracellular transport in neurons. After a motivation and appropriate scaling of the model we present numerical simulations showing that initial differences in neurite length result in phenomena of biological relevance, i.e. a positive feedback that enhances transport into the longer neurite and oscillation of vesicles concentrations that can be interpreted as cycles of extension and retraction observed in experiments. Thus, our model is a first step towards a better understanding of the interplay between the transport of vesicles and the spatial organization of cells.


Assuntos
Modelos Biológicos , Neuritos , Vesículas Transportadoras , Transporte Biológico , Simulação por Computador , Humanos , Neuritos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Vesículas Transportadoras/metabolismo
13.
Cell Rep ; 37(12): 110141, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936879

RESUMO

Neurons are highly polarized cells that display characteristic differences in the organization of their organelles in axons and dendrites. The kinases SadA and SadB (SadA/B) promote the formation of distinct axonal and dendritic extensions during the development of cortical and hippocampal neurons. Here, we show that SadA/B are required for the specific dynamics of axonal mitochondria. Ankyrin B (AnkB) stimulates the activity of SadA/B that function as regulators of mitochondrial dynamics through the phosphorylation of tau. Suppression of SadA/B or AnkB in cortical neurons induces the elongation of mitochondria by disrupting the balance of fission and fusion. SadA/B-deficient neurons show an accumulation of hyper-fused mitochondria and activation of the integrated stress response (ISR). The normal dynamics of axonal mitochondria could be restored by mild actin destabilization. Thus, the elongation after loss of SadA/B results from an excessive stabilization of actin filaments and reduction of Drp1 recruitment to mitochondria.


Assuntos
Anquirinas/metabolismo , Axônios/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Anquirinas/genética , Polaridade Celular , Células Cultivadas , Dinaminas/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Células HEK293 , Humanos , Fosforilação , Gravidez , Proteínas Serina-Treonina Quinases/genética , Ratos
14.
J Biol Chem ; 284(48): 33571-9, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19812038

RESUMO

The Aurora kinases are a family of serine/threonine protein kinases that perform important functions during the cell cycle. Recently, it was shown that Drosophila Aurora A also regulates the asymmetric localization of Numb to the basal and the partitioning-defective (Par) complex to the apical cortex of neuroblasts by phosphorylating Par6. Here, we show that Aurora A is required for neuronal polarity. Suppression of Aurora A by RNA interference results in the loss of neuronal polarity. Aurora A interacts directly with the atypical protein kinase C binding domain of Par3 and phosphorylates it at serine 962. The phosphorylation of Par3 at serine 962 contributes to its function in the establishment of neuronal polarity.


Assuntos
Proteínas de Transporte/metabolismo , Polaridade Celular , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Substituição de Aminoácidos , Animais , Aurora Quinase A , Aurora Quinases , Axônios/metabolismo , Sítios de Ligação , Western Blotting , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Tecido Nervoso , Neurônios/citologia , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Serina/genética , Transfecção
15.
Nature ; 424(6947): 391-7, 2003 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-12879061

RESUMO

The motility and morphogenesis of endothelial cells is controlled by spatio-temporally regulated activation of integrin adhesion receptors, and integrin activation is stimulated by major determinants of vascular remodelling. In order for endothelial cells to be responsive to changes in activator gradients, the adhesiveness of these cells to the extracellular matrix must be dynamic, and negative regulators of integrins could be required. Here we show that during vascular development and experimental angiogenesis, endothelial cells generate autocrine chemorepulsive signals of class 3 semaphorins (SEMA3 proteins) that localize at nascent adhesive sites in spreading endothelial cells. Disrupting endogenous SEMA3 function in endothelial cells stimulates integrin-mediated adhesion and migration to extracellular matrices, whereas exogenous SEMA3 proteins antagonize integrin activation. Misexpression of dominant negative SEMA3 receptors in chick embryo endothelial cells locks integrins in an active conformation, and severely impairs vascular remodelling. Sema3a null mice show vascular defects as well. Thus during angiogenesis endothelial SEMA3 proteins endow the vascular system with the plasticity required for its reshaping by controlling integrin function.


Assuntos
Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Integrinas/antagonistas & inibidores , Morfogênese , Neovascularização Fisiológica , Semaforina-3A/metabolismo , Animais , Comunicação Autócrina , Adesão Celular , Movimento Celular , Embrião de Galinha , Endotélio Vascular/embriologia , Matriz Extracelular/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Genes Dominantes , Humanos , Integrinas/química , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Semaforina-3A/genética
16.
Neuron ; 48(1): 63-75, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16202709

RESUMO

Chemorepulsion by semaphorins plays a critical role during the development of neuronal projections. Although semaphorin-induced chemoattraction has been reported in vitro, the contribution of this activity to axon pathfinding is still unclear. Using genetic and culture models, we provide evidence that both attraction and repulsion by Sema3B, a secreted semaphorin, are critical for the positioning of a major brain commissural projection, the anterior commissure (AC). NrCAM, an immunoglobulin superfamily adhesion molecule of the L1 subfamily, associates with neuropilin-2 and is a component of a receptor complex for Sema3B and Sema3F. Finally, we show that activation of the FAK/Src signaling cascade distinguishes Sema3B-mediated attractive from repulsive axonal responses of neurons forming the AC, revealing a mechanism underlying the dual activity of this guidance cue.


Assuntos
Neurônios/metabolismo , Condutos Olfatórios , Semaforinas/fisiologia , Núcleos Septais/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Northern Blotting/métodos , Western Blotting/métodos , Moléculas de Adesão Celular/metabolismo , Agregação Celular/efeitos dos fármacos , Agregação Celular/fisiologia , Células Cultivadas , Chlorocebus aethiops , Clonagem Molecular/métodos , Técnicas de Cocultura/métodos , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Cones de Crescimento/fisiologia , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Hibridização In Situ/métodos , Indóis/farmacologia , Camundongos , Camundongos Knockout , Neuropilina-2/metabolismo , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/metabolismo , Ligação Proteica/fisiologia , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Semaforinas/deficiência , Núcleos Septais/crescimento & desenvolvimento , Núcleos Septais/metabolismo , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia , Transfecção/métodos , Quinases da Família src/fisiologia
17.
PLoS One ; 14(7): e0219362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318893

RESUMO

One of the earliest steps during the development of the nervous system is the establishment of neuronal polarity and the formation of an axon. The intrinsic mechanisms that promote axon formation have been extensively analyzed. However, much less is known about the extrinsic signals that initiate axon formation. One of the candidates for these signals is Insulin-like growth factor 1 (Igf1) that acts through the Igf1 (Igf1R) and insulin receptors (InsR). Since Igf1R and InsR may act redundantly we analyzed conditional cortex-specific knockout mice that are deficient for both Igf1r and Insr to determine if they regulate the development of the cortex and the formation of axons in vivo. Our results show that Igf1R/InsR function is required for the normal development of the embryonic hippocampus and cingulate cortex while the lateral cortex does not show apparent defects in the Igf1r;Insr knockout. In the cingulate cortex, the number of intermediate progenitors and deep layer neurons is reduced and the corpus callosum is absent at E17. However, cortical organization and axon formation are not impaired in knockout embryos. In culture, cortical and hippocampal neurons from Igf1r;Insr knockout embryos extend an axon but the length of this axon is severely reduced. Our results indicate that Igf1R/InsR function is required for brain development in a region-specific manner and promotes axon growth but is not essential for neuronal polarization and migration in the developing brain.


Assuntos
Axônios/metabolismo , Corpo Caloso/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animais , Polaridade Celular , Células Cultivadas , Corpo Caloso/embriologia , Embrião de Mamíferos/metabolismo , Camundongos Knockout , Neuroglia/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
18.
Neuron ; 39(4): 589-98, 2003 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-12925274

RESUMO

The semaphorins are a large group of extracellular proteins involved in a variety of processes during development, including neuronal migration and axon guidance. Their distinctive feature is a conserved 500 amino acid semaphorin domain, a ligand-receptor interaction module also present in plexins and scatter-factor receptors. We report the crystal structure of a secreted 65 kDa form of Semaphorin-3A (Sema3A), containing the full semaphorin domain. Unexpectedly, the semaphorin fold is a variation of the beta propeller topology. Analysis of the Sema3A structure and structure-based mutagenesis data identify the neuropilin binding site and suggest a potential plexin interaction site. Based on the structure, we present a model for the initiation of semaphorin signaling and discuss potential similarities with the signaling mechanisms of other beta propeller cell surface receptors, such as integrins and the LDL receptor.


Assuntos
Semaforina-3A/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Moléculas de Adesão Celular/metabolismo , Camundongos , Modelos Teóricos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Neuropilinas/metabolismo , Estrutura Terciária de Proteína , Semaforina-3A/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína
19.
Dev Biol ; 312(1): 461-70, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18028897

RESUMO

The extrinsic and intrinsic factors that regulate the size and complexity of dendritic arborizations are still poorly understood. Here we identify Fjx1, the rodent ortholog of the Drosophila planar cell polarity (PCP) protein Four-jointed (Fj), as a new inhibitory factor that regulates dendrite extension. The Drosophila gene four-jointed (fj) has been suggested to provide directional information in wing discs, but the mechanism how it acts is only poorly understood and the function of its mammalian homolog Fjx1 remains to be investigated. We analyzed the phenotype of a null mutation for mouse Fjx1. Homozygous Fjx1 mutants show an abnormal morphology of dendritic arbors in the hippocampus. In cultured hippocampal neurons from Fjx1 mutant mice, loss of Fjx1 resulted in an increase in dendrite extension and branching. Addition of Fjx1 to cultures of dissociated hippocampal neurons had the opposite effect and reduced the length of dendrites and decreased dendritic branching. Rescue experiments with cultured neurons showed that Fjx1 can act both cell-autonomously and non-autonomously. Our results identify Fjx1 as a new inhibitory factor that regulates dendrite extension.


Assuntos
Dendritos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Homologia de Sequência de Aminoácidos , Animais , Giro Denteado/citologia , Giro Denteado/metabolismo , Embrião de Mamíferos/metabolismo , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Mutação/genética , Fenótipo , Transfecção
20.
Mol Cell Biol ; 25(6): 2310-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743826

RESUMO

The semaphorins are a large family of proteins involved in the patterning of both the vascular and the nervous systems. In order to analyze the function of the membrane-bound semaphorin 5A (Sema5A), we generated mice homozygous for a null mutation in the Sema5a gene. Homozygous null mutants die between embryonic development days 11.5 (E11.5) and E12.5, indicating an essential role of Sema5A during embryonic development. Mutant embryos did not show any morphological defects that could account for the lethality of the mutation. A detailed analysis of the vascular system uncovered a role of Sema5A in the remodeling of the cranial blood vessels. In Sema5A null mutants, the complexity of the hierarchically organized branches of the cranial cardinal veins was decreased. Our results represent the first genetic analysis of the function of a class 5 semaphorin during embryonic development and identify a role of Sema5A in the regional patterning of the vasculature.


Assuntos
Padronização Corporal , Genes Letais/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Crânio/irrigação sanguínea , Veias/embriologia , Animais , Veias Cerebrais/anormalidades , Veias Cerebrais/embriologia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/citologia , Inativação Gênica , Homozigoto , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação/genética , Proteínas do Tecido Nervoso/genética , Semaforinas , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA