Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 146(8): 3243-3257, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086478

RESUMO

Postural instability and freezing of gait are the most debilitating dopamine-refractory motor impairments in advanced stages of Parkinson's disease because of increased risk of falls and poorer quality of life. Recent findings suggest an inability to efficaciously utilize vestibular information during static posturography among people with Parkinson's disease who exhibit freezing of gait, with associated changes in cholinergic system integrity as assessed by vesicular acetylcholine transporter PET. There is a lack of adequate understanding of how postural control varies as a function of available sensory information in patients with Parkinson's disease with freezing of gait. The goal of this cross-sectional study was to examine cerebral cholinergic system changes that associate with inter-sensory postural control processing features as assessed by dynamic computerized posturography and acetylcholinesterase PET. Seventy-five participants with Parkinson's disease, 16 of whom exhibited freezing of gait, underwent computerized posturography on the NeuroCom© Equitest sensory organization test platform, striatal dopamine, and acetylcholinesterase PET scanning. Findings demonstrated that patients with Parkinson's disease with freezing of gait have greater difficulty maintaining balance in the absence of reliable proprioceptive cues as compared to those without freezing of gait [ß = 0.28 (0.021, 0.54), P = 0.034], an effect that was independent of disease severity [ß = 0.16 (0.062, 0.26), P < 0.01] and age [ß = 0.092 (-0.005, 0.19), P = 0.062]. Exploratory voxel-based analysis revealed an association between postural control and right hemispheric cholinergic network related to visual-vestibular integration and self-motion perception. High anti-cholinergic burden predicted postural control impairment in a manner dependent on right hemispheric cortical cholinergic integrity [ß = 0.34 (0.065, 0.61), P < 0.01]. Our findings advance the perspective that cortical cholinergic system might play a role in supporting postural control after nigro-striatal dopaminergic losses in Parkinson's disease. Failure of cortex-dependent visual-vestibular integration may impair detection of postural instability in absence of reliable proprioceptive cues. Better understanding of how the cholinergic system plays a role in this process may augur novel treatments and therapeutic interventions to ameliorate debilitating symptoms in patients with advanced Parkinson's disease.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Acetilcolinesterase , Dopamina , Estudos Transversais , Qualidade de Vida , Equilíbrio Postural
2.
Brain Sci ; 13(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137159

RESUMO

Flumazenil is an allosteric modulator of the γ-aminobutyric acid-A receptor (GABAAR) benzodiazepine binding site that could normalize neuronal signaling and improve motor impairments in Parkinson's disease (PD). Little is known about how regional GABAAR availability affects motor symptoms. We investigated the relationship between regional availability of GABAAR benzodiazepine binding sites and motor impairments in PD. Methods: A total of 11 Patients with PD (males; mean age 69.0 ± 4.6 years; Hoehn and Yahr stages 2-3) underwent [11C]flumazenil GABAAR benzodiazepine binding site and [11C]dihydrotetrabenazine vesicular monoamine transporter type-2 (VMAT2) PET imaging and clinical assessment. Stepwise regression analysis was used to predict regional cerebral correlates of the four cardinal UPDRS motor scores using cortical, striatal, thalamic, and cerebellar flumazenil binding estimates. Thalamic GABAAR availability was selectively associated with axial motor scores (R2 = 0.55, F = 11.0, ß = -6.4, p = 0.0009). Multi-ligand analysis demonstrated significant axial motor predictor effects by both thalamic GABAAR availability (R2 = 0.47, ß = -5.2, F = 7.2, p = 0.028) and striatal VMAT2 binding (R2 = 0.30, ß = -3.9, F = 9.1, p = 0.019; total model: R2 = 0.77, F = 11.9, p = 0.0056). Post hoc analysis demonstrated that thalamic [11C]methyl-4-piperidinyl propionate cholinesterase PET and K1 flow delivery findings were not significant confounders. Findings suggest that reduced thalamic GABAAR availability correlates with worsened axial motor impairments in PD, independent of nigrostriatal degeneration. These findings may augur novel non-dopaminergic approaches to treating axial motor impairments in PD.

3.
Nutrients ; 15(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447394

RESUMO

There is growing interest in the investigation of ketogenic diets as a potential therapy for bipolar disorder. The overlapping pharmacotherapies utilized for both bipolar disorder and seizures suggest that a mechanistic overlap may exist between these conditions, with fasting and the ketogenic diet representing the most time-proven therapies for seizure control. Recently, preliminary evidence has begun to emerge supporting a potential role for ketogenic diets in treating bipolar disorder. Notably, some patients may struggle to initiate a strict diet in the midst of a mood episode or significant life stressors. The key question addressed by this pilot clinical trial protocol is if benefits can be achieved with a less restrictive diet, as this would allow such an intervention to be accessible for more patients. Recent development of so-called ketone esters, that once ingested is converted to natural ketone bodies, combined with low glycemic index dietary changes has the potential to mimic two foundational components of therapeutic ketosis: high levels of ketones and minimal spiking of glucose/insulin. This pilot clinical trial protocol thus aims to investigate the effect of a 'ketogenic-mimicking diet' (combining supplementation of ketone esters with a low glycemic index dietary intervention) on neural network stability, mood, and biomarker outcomes in the setting of bipolar disorder. Positive findings obtained via this pilot clinical trial protocol may support future target engagement studies of ketogenic-mimicking diets or related ketogenic interventions. A lack of positive findings, in contrast, may justify a focus on more strict dietary interventions for future research.


Assuntos
Transtorno Bipolar , Dieta Cetogênica , Convulsões , Humanos , Transtorno Bipolar/dietoterapia , Dieta , Dieta Cetogênica/métodos , Corpos Cetônicos , Cetonas , Convulsões/prevenção & controle , Projetos Piloto
4.
Neural Regen Res ; 20(1): 82-92, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767478

RESUMO

Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population. Posture and gait control does not happen automatically, as previously believed, but rather requires continuous involvement of central nervous mechanisms. To effectively exert control over the body, the brain must integrate multiple streams of sensory information, including visual, vestibular, and somatosensory signals. The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work. Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults. Insufficient emphasis, however, has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance. In the present work, we review the contributions of somatosensory, visual, and vestibular modalities, along with their multisensory intersections to gait and balance in older adults and patients with Parkinson's disease. We also review evidence of vestibular contributions to multisensory temporal binding windows, previously shown to be highly pertinent to fall risk in older adults. Lastly, we relate multisensory vestibular mechanisms to potential neural substrates, both at the level of neurobiology (concerning positron emission tomography imaging) and at the level of electrophysiology (concerning electroencephalography). We hope that this integrative review, drawing influence across multiple subdisciplines of neuroscience, paves the way for novel research directions and therapeutic neuromodulatory approaches, to improve the lives of older adults and patients with neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA