Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(50): 31987-31992, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33268496

RESUMO

White Guinea yam (Dioscorea rotundata) is an important staple tuber crop in West Africa. However, its origin remains unclear. In this study, we resequenced 336 accessions of white Guinea yam and compared them with the sequences of wild Dioscorea species using an improved reference genome sequence of D. rotundata In contrast to a previous study suggesting that D. rotundata originated from a subgroup of Dioscorea praehensilis, our results suggest a hybrid origin of white Guinea yam from crosses between the wild rainforest species D. praehensilis and the savannah-adapted species Dioscorea abyssinica We identified a greater genomic contribution from D. abyssinica in the sex chromosome of Guinea yam and extensive introgression around the SWEETIE gene. Our findings point to a complex domestication scenario for Guinea yam and highlight the importance of wild species as gene donors for improving this crop through molecular breeding.


Assuntos
Produtos Agrícolas/genética , Dioscorea/genética , Genoma de Planta , Hibridização Genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Domesticação , Guiné , Filogenia , Melhoramento Vegetal/métodos , Tubérculos , Polimorfismo de Nucleotídeo Único , Cromossomos Sexuais/genética
2.
Ann Bot ; 126(6): 1029-1038, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32592585

RESUMO

BACKGROUND AND AIMS: Inferring the diffusion history of many human-dispersed species is still not straightforward due to unresolved past human migrations. The centre of diversification and routes of migration of the autopolyploid and clonally propagated greater yam, Dioscorea alata, one of the oldest edible tubers, remain unclear. Here, we address yam demographic and dispersal history using a worldwide sample. METHODS: We characterized genome-wide patterns of genetic variation using genotyping by sequencing 643 greater yam accessions spanning four continents. First, we disentangled the polyploid and clonal components of yam diversity using allele frequency distribution and identity by descent approaches. We then addressed yam geographical origin and diffusion history with a model-based coalescent inferential approach. KEY RESULTS: Diploid genotypes were more frequent than triploids and tetraploids worldwide. Genetic diversity was generally low and clonality appeared to be a main factor of diversification. The most likely evolutionary scenario supported an early divergence of mainland Southeast Asian and Pacific gene pools with continuous migration between them. The genetic make-up of triploids and tetraploids suggests that they have originated from these two regions before westward yam migration. The Indian Peninsula gene pool gave origin to the African gene pool, which was later introduced to the Caribbean region. CONCLUSIONS: Our results are congruent with the hypothesis of independent domestication origins of the two main Asian and Pacific gene pools. The low genetic diversity and high clonality observed suggest a strong domestication bottleneck followed by thousands of years of widespread vegetative propagation and polyploidization. Both processes reduced the extent of diversity available for breeding, and this is likely to threaten future adaptation.


Assuntos
Dioscorea , Evolução Biológica , Dioscorea/genética , Genótipo , Humanos , Repetições de Microssatélites , Poliploidia
3.
PLoS One ; 19(2): e0296675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394294

RESUMO

Although spinach is predominantly dioecious, monoecious plants with varying proportions of female and male flowers are also present. Recently, monoecious inbred lines with highly female and male conditions have been preferentially used as parents for F1-hybrids, rather than dioecious lines. Accordingly, identifying the loci for monoecism is an important issue for spinach breeding. We here used long-read sequencing and Hi-C technology to construct SOL_r2.0_pseudomolecule, a set of six pseudomolecules of spinach chromosomes (total length: 879.2 Mb; BUSCO complete 97.0%) that are longer and more genetically complete than our previous version of pseudomolecules (688.0 Mb; 81.5%). Three QTLs, qFem2.1, qFem3.1, and qFem6.1, responsible for monoecism were mapped to SOL_r2.0_pseudomolecule. qFem3.1 had the highest LOD score and corresponded to the M locus, which was previously identified as a determinant of monoecious expression, by genetic analysis of progeny from female and monoecious plants. The other QTLs were shown to modulate the ratio of female to male flowers in monoecious plants harboring a dominant allele of the M gene. Our findings will enable breeders to efficiently produce highly female- and male-monoecious parental lines for F1-hybrids by pyramiding the three QTLs. Through fine-mapping, we narrowed the candidate region for the M locus to a 19.5 kb interval containing three protein-coding genes and one long non-coding RNA gene. Among them, only RADIALIS-like-2a showed a higher expression in the reproductive organs, suggesting that it might play a role in reproductive organogenesis. However, there is no evidence that it is involved in the regulation of stamen and pistil initiation, which are directly related to the floral sex differentiation system in spinach. Given that auxin is involved in reproductive organ formation in many plant species, genes related to auxin transport/response, in addition to floral organ formation, were identified as candidates for regulators of floral sex-differentiation from qFem2.1 and qFem6.1.


Assuntos
Melhoramento Vegetal , Spinacia oleracea , Spinacia oleracea/genética , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Ácidos Indolacéticos
4.
Microbes Environ ; 37(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527002

RESUMO

The bacterial community of water yam (Dioscorea alata L.) cv. A-19 is vital because it may promote plant growth without the need for fertilization. However, the influence of fertilization practices on the composition and proportion of the bacterial community of water yam cv. A-19 has not yet been extensively examined. Therefore, we herein investigated the diversity and composition of the bacterial community of water yam cv. A-19 cultivated with and without chemical fertilization using amplicon community profiling based on 16S rRNA gene sequences. No significant difference was detected in the growth of plants cultivated with or without chemical fertilization. Alpha diversity indices were significantly dependent on each compartment, and a decrease was observed in indices from the belowground (rhizosphere and root) to aboveground compartments (stem and leaf). The bacterial composition of each compartment was clustered into three groups: bulk soil, rhizosphere and root, and stem and leaf. Chemical fertilization did not significantly influence the diversity or composition of the water yam cv. A-19 bacterial community. It remained robust in plants cultivated with chemical fertilization. The amplicon community profiling of bacterial communities also revealed the dominance of two bacterial clades, the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade and Burkholderia-Caballeronia-Paraburkholderia clade, with and without chemical fertilization. This is the first study to characterize the bacterial community of water yam cv. A-19 cultivated with and without chemical fertilization.


Assuntos
Dioscorea , Bactérias/genética , Dioscorea/genética , Dioscorea/microbiologia , Compostos Orgânicos , Plantas/genética , RNA Ribossômico 16S/genética , Rizosfera , Água
5.
Sci Rep ; 9(1): 1748, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30742000

RESUMO

In sugarcane (Saccharum spp. hybrid) breeding, introgression of useful genes via intergeneric hybridization is a powerful strategy for improving the crop productivity. Erianthus arundinaceus shows great potential in terms of useful traits; however, little is known about the cytogenetic and agronomic characteristics of intergeneric hybrids between these two species. Here, we examine the cytogenetic and agronomic characteristics, and relationships between the two in intergeneric F1 hybrids between modern sugarcane cultivar and E. arundinaceus identified by amplification of 5S rDNA markers and morphological characteristics. The nuclear DNA content of the hybrids varied from 6.07 to 8.94 pg/2C, with intra-clonal variation in DNA content and 5S rDNA sites. Genomic in situ hybridization revealed 53 to 82 chromosomes in the hybrids, with 53 to 56 derived from sugarcane and 1 to 29 from E. arundinaceus. There were significant positive correlations between the number of E. arundinaceus chromosomes and dry matter yield, millable stalk weight, single stalk weight, and stalk diameter, but not sucrose content, reducing sugar content, sucrose/reducing sugar ratio or fiber content. This detailed information on intergeneric F1 hybrids between modern sugarcane cultivar and E. arundinaceus will contribute to effective utilization of E. arundinaceus in sugarcane breeding.


Assuntos
Hibridização Genética , Poaceae/genética , Saccharum/genética , Cromossomos de Plantas , Análise Citogenética , Variação Genética , Genômica/métodos , Cariótipo , Poaceae/classificação , RNA Ribossômico 5S/genética , Saccharum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA