Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11): e2115480119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254891

RESUMO

SignificanceComputational protein design promises to advance applications in medicine and biotechnology by creating proteins with many new and useful functions. However, new functions require the design of specific and often irregular atom-level geometries, which remains a major challenge. Here, we develop computational methods that design and predict local protein geometries with greater accuracy than existing methods. Then, as a proof of concept, we leverage these methods to design new protein conformations in the enzyme ketosteroid isomerase that change the protein's preference for a key functional residue. Our computational methods are openly accessible and can be applied to the design of other intricate geometries customized for new user-defined protein functions.


Assuntos
Aminoácidos/química , Desenho Assistido por Computador , Engenharia de Proteínas/métodos , Proteínas/química , Robótica , Algoritmos , Biologia Computacional/métodos , Isomerases/química , Modelos Moleculares , Conformação Proteica , Proteínas/genética , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 114(39): E8174-E8183, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893998

RESUMO

The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.


Assuntos
Apoptose/fisiologia , Caspase 3/genética , Drosophila melanogaster/metabolismo , Ativação Enzimática/genética , Luz , Neurônios Motores/metabolismo , Células Receptoras Sensoriais/metabolismo , Técnicas de Ablação , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Caspase 3/metabolismo , Caspases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Condução Nervosa/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Virais/metabolismo
3.
Mol Cell Proteomics ; 11(7): M111.014969, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22389433

RESUMO

Structurally disordered regions play a key role in protein-protein interaction networks and the evolution of highly connected proteins, enabling the molecular mechanisms for multiple binding. However, the role of protein disorder in the evolution of interaction networks has only been investigated through the analysis of individual proteins, making it impossible to distinguish its specific impact in the (re)shaping of their interaction environments. Now, the availability of large interactomes for several model organisms permits exploration of the role of disorder in protein interaction networks not only at the level of the interacting proteins but of the interactions themselves. By comparing the interactomes of human, fly, and yeast, we discovered that, despite being much more abundant, disordered interactions are significantly less conserved than their ordered counterparts. Furthermore, our analyses provide evidence that this happens not only because disordered proteins are less conserved but also because they display a higher capacity to rewire their interaction neighborhood through evolution. Overall, our results support the hypothesis that conservation of disorder gives a clear evolutionary advantage, facilitating the change of interaction partners during evolution. Moreover, this mechanism is not exclusive of a few anecdotal cases but a global feature present in the interactome networks of entire organisms.


Assuntos
Drosophila melanogaster/química , Proteoma/química , Saccharomyces cerevisiae/química , Animais , Evolução Biológica , Sequência Conservada , Bases de Dados de Proteínas , Drosophila melanogaster/genética , Humanos , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas/genética , Proteoma/genética , Saccharomyces cerevisiae/genética
4.
Nucleic Acids Res ; 40(Web Server issue): W157-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22618871

RESUMO

The many ongoing genome sequencing initiatives are delivering comprehensive lists of the individual molecular components present in an organism, but these reveal little about how they work together. Follow-up initiatives are revealing thousands of interrelationships between gene products that need to be analyzed with novel bioinformatics approaches able to capture their complex emerging properties. Recently, we developed NetAligner, a novel network alignment tool that allows the identification of conserved protein complexes and pathways across organisms, providing valuable hints as to how those interaction networks evolved. NetAligner includes the prediction of likely conserved interactions, based on evolutionary distances, to counter the high number of missing interactions in current interactome networks, and a fast assessment of the statistical significance of individual alignment solutions, which increases its performance with respect to existing tools. The web server implementation of the NetAligner algorithm presented here features complex, pathway and interactome to interactome alignments for seven model organisms, namely Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae and Escherichia coli. The user can query complexes and pathways of arbitrary topology against a target species interactome, or directly compare two complete interactomes to identify conserved complexes and subnetworks. Alignment solutions can be downloaded or directly visualized in the browser. The NetAligner web server is publicly available at http://netaligner.irbbarcelona.org/.


Assuntos
Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Software , Animais , Gráficos por Computador , Humanos , Internet , Camundongos
5.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 706-720, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428847

RESUMO

Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal.


Assuntos
Muramidase , Peptidoglicano , Muramidase/química , Sequência de Aminoácidos , Modelos Moleculares , Glicosídeo Hidrolases/química , Parede Celular
6.
EMBO Rep ; 11(12): 977-84, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21072059

RESUMO

Aurora A is a serine/threonine kinase that is essential for a wide variety of cell-cycle-related events, but only a small number of its substrates are known. We present and validate a strategy by which to identify Aurora A substrates and their phosphorylation sites. We developed a computational approach integrating various types of biological information to generate a list of 90 potential Aurora substrates, with a prediction accuracy of about 80%. We also demonstrated the specific phosphorylation of NUSAP (nucleolar and spindle-associated protein) by Aurora A in vivo. Our results provide a means by which to develop an understanding of Aurora A function and suggest unexpected roles for this kinase.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Aurora Quinases , Biologia Computacional , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Fosfosserina/metabolismo , Reprodutibilidade dos Testes , Especificidade por Substrato
7.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1564-1578, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866612

RESUMO

ß-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some ß-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain ß-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain ß-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective ß-galactosidase modification for industrial purposes in the future.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/metabolismo , beta-Galactosidase/metabolismo , Proteínas de Bactérias/química , Bifidobacterium bifidum/enzimologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Galactose/metabolismo , Hidrólise , Lactose/metabolismo , Especificidade por Substrato , beta-Galactosidase/química
8.
Science ; 366(6468): 1024-1028, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31754004

RESUMO

Sensing and responding to signals is a fundamental ability of living systems, but despite substantial progress in the computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here, we describe a generalizable computational strategy for designing sensor-actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation through split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds. The sensors are functional in vitro and in cells, and the crystal structure of the engineered binding site closely matches the design model. Our computational design strategy opens broad avenues to link biological outputs to new signals.


Assuntos
Fosfatos de Poli-Isoprenil/metabolismo , Engenharia de Proteínas , Multimerização Proteica , Proteínas/química , Sesquiterpenos/metabolismo , Repetição de Anquirina , Sítios de Ligação , Técnicas Biossensoriais , Biologia Computacional , Simulação por Computador , Cristalografia por Raios X , Ligantes , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Proteínas/genética , Proteínas/metabolismo
9.
Proteomics ; 8(10): 1959-64, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18491310

RESUMO

The last years have seen the emergence of many large-scale proteomics initiatives that have identified thousands of new protein interactions and macromolecular assemblies. However, unfortunately, only a few among the discovered complexes meet the high-quality standards required to be promptly used in structural studies. This has thus created an increasing gap between the number of known protein interactions and complexes and those for which a high-resolution 3-D structure is available. Here, we present and validate a computational strategy to distinguish those complexes found in high-throughput affinity purification experiments that will stand the best chances to successfully express, purify and crystallize with little further intervention. Our method suggests that there are some 50 complexes recently discovered in yeast that could readily enter the structural biology pipelines.


Assuntos
Biologia Computacional/métodos , Proteômica/métodos , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes
10.
FEBS Lett ; 582(8): 1259-65, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18282477

RESUMO

The dominant conceptual reductionism in drug discovery has resulted in many promising drug candidates to fail during the last clinical phases, mainly due to a lack of knowledge about the patho-physiological pathways they are acting on. Consequently, to increase the revenues of the drug discovery process, we need to improve our understanding of the molecular mechanisms underlying complex cellular processes and consider each potential drug target in its full biological context. Here, we review several strategies that combine computational and experimental techniques, and suggest a systems pathology approach that will ultimately lead to a better comprehension of the molecular bases of disease.


Assuntos
Patologia , Biologia de Sistemas
11.
PLoS One ; 10(9): e0130433, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26335248

RESUMO

The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.


Assuntos
Benchmarking , Conjuntos de Dados como Assunto , Internet , Modelos Moleculares , Proteínas/química , Aminoácidos/química , Evolução Química , Mutação , Proteínas/genética , Termodinâmica
12.
PeerJ ; 2: e413, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918034

RESUMO

Macromolecular assemblies play an important role in almost all cellular processes. However, despite several large-scale studies, our current knowledge about protein complexes is still quite limited, thus advocating the use of in silico predictions to gather information on complex composition in model organisms. Since protein-protein interactions present certain constraints on the functional divergence of macromolecular assemblies during evolution, it is possible to predict complexes based on orthology data. Here, we show that incorporating interaction information through network alignment significantly increases the precision of orthology-based complex prediction. Moreover, we performed a large-scale in silico screen for protein complexes in human, yeast and fly, through the alignment of hundreds of known complexes to whole organism interactomes. Systematic comparison of the resulting network alignments to all complexes currently known in those species revealed many conserved complexes, as well as several novel complex components. In addition to validating our predictions using orthogonal data, we were able to assign specific functional roles to the predicted complexes. In several cases, the incorporation of interaction data through network alignment allowed to distinguish real complex components from other orthologous proteins. Our analyses indicate that current knowledge of yeast protein complexes exceeds that in other organisms and that predicting complexes in fly based on human and yeast data is complementary rather than redundant. Lastly, assessing the conservation of protein complexes of the human pathogen Mycoplasma pneumoniae, we discovered that its complexes repertoire is different from that of eukaryotes, suggesting new points of therapeutic intervention, whereas targeting the pathogen's Restriction enzyme complex might lead to adverse effects due to its similarity to ATP-dependent metalloproteases in the human host.

13.
Methods Enzymol ; 523: 109-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23422428

RESUMO

Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to the improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low-energy structures generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool optimizes the weights on the different components of the energy function by maximizing the recapitulation of a wide range of experimental observations. We use the tools to examine three proposed modifications to the Rosetta energy function: improving the unfolded state energy model (reference energies), using bicubic spline interpolation to generate knowledge-based torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov & Dunbrack, 2011).


Assuntos
Substâncias Macromoleculares/química , Algoritmos , Conformação Proteica , Software
14.
PLoS One ; 7(2): e31220, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363585

RESUMO

Genome sequencing projects provide nearly complete lists of the individual components present in an organism, but reveal little about how they work together. Follow-up initiatives have deciphered thousands of dynamic and context-dependent interrelationships between gene products that need to be analyzed with novel bioinformatics approaches able to capture their complex emerging properties. Here, we present a novel framework for the alignment and comparative analysis of biological networks of arbitrary topology. Our strategy includes the prediction of likely conserved interactions, based on evolutionary distances, to counter the high number of missing interactions in the current interactome networks, and a fast assessment of the statistical significance of individual alignment solutions, which vastly increases its performance with respect to existing tools. Finally, we illustrate the biological significance of the results through the identification of novel complex components and potential cases of cross-talk between pathways and alternative signaling routes.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Transdução de Sinais , Animais , Drosophila melanogaster/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo
15.
Structure ; 18(9): 1075-82, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826334

RESUMO

For high-throughput structural studies of protein complexes of composition inferred from proteomics data, it is crucial that candidate complexes are selected accurately. Herein, we exemplify a procedure that combines a bioinformatics tool for complex selection with in vivo validation, to deliver structural results in a medium-throughout manner. We have selected a set of 20 yeast complexes, which were predicted to be feasible by either an automated bioinformatics algorithm, by manual inspection of primary data, or by literature searches. These complexes were validated with two straightforward and efficient biochemical assays, and heterologous expression technologies of complex components were then used to produce the complexes to assess their feasibility experimentally. Approximately one-half of the selected complexes were useful for structural studies, and we detail one particular success story. Our results underscore the importance of accurate target selection and validation in avoiding transient, unstable, or simply nonexistent complexes from the outset.


Assuntos
Biologia Computacional/métodos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Bases de Dados de Proteínas , Proteômica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
BMC Syst Biol ; 3: 74, 2009 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-19615085

RESUMO

BACKGROUND: Understanding how individual genes contribute towards the fitness of an organism is a fundamental problem in biology. Although recent genome-wide screens have generated abundant data on quantitative fitness for single gene knockouts, very few studies have systematically integrated other types of biological information to understand how and why deletion of specific genes give rise to a particular fitness effect. In this study, we combine quantitative fitness data for single gene knock-outs in yeast with large-scale interaction discovery experiments to understand the effect of gene deletion on the modular architecture of protein complexes, under different growth conditions. RESULTS: Our analysis reveals that genes in complexes show more severe fitness effects upon deletion than other genes but, in contrast to what has been observed in binary protein-protein interaction networks, we find that this is not related to the number of complexes in which they are present. We also find that, in general, the core and attachment components of protein complexes are equally important for the complex machinery to function. However, when quantifying the importance of core and attachments in single complex variations, or isoforms, we observe that this global trend originates from either the core or the attachment components being more important for strain fitness, both being equally important or both being dispensable. Finally, our study reveals that different isoforms of a complex can exhibit distinct fitness patterns across growth conditions. CONCLUSION: This study presents a powerful approach to unveil the molecular basis for various complex phenotypic profiles observed in gene deletion experiments. It also highlights some interesting cases of potential functional compensation between protein paralogues and suggests a new piece to fit into the histone-code puzzle.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Fúngicos/genética , Leveduras/crescimento & desenvolvimento , Leveduras/genética , Técnicas de Cultura , Fermentação , Técnicas de Silenciamento de Genes , Leveduras/metabolismo
17.
FEBS J ; 276(19): 5390-405, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19712106

RESUMO

Virtually every process in a cell is carried out by macromolecular complexes whose actions need to be perfectly orchestrated. The synchronization and regulation of these biological functions is indeed critical and is usually carried out by complex networks of transient protein interactions. Here, we review some of the many strategies that proteins in regulatory networks use to achieve the dynamic plasticity necessary to rapidly respond to diverse cellular needs. More specifically, we present recent work on the molecular bases of transient peptide-mediated interactions and the role that post-translational modifications and disordered regions might play. Finally, in light of some recent findings, we speculate on the possibility of a new regulatory code for intrinsically disordered proteins and the potential biophysical and functional advantages that disorder might provide.


Assuntos
Domínios e Motivos de Interação entre Proteínas/fisiologia , Animais , Sítios de Ligação , Humanos , Sistema de Sinalização das MAP Quinases , Redes e Vias Metabólicas , Modelos Moleculares , Fosforilação , Ligação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA