Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139152

RESUMO

Dietary consumption of olive oil represents a key pillar of the Mediterranean diet, which has been shown to exert beneficial effects on human health, such as the prevention of chronic non-communicable diseases like cancers and neurodegenerative diseases, among others. These health benefits are partly mediated by the high-quality extra virgin olive oil (EVOO), which is produced mostly in Mediterranean countries and is directly made from olives, the fruit of the olive tree (Olea europaea L.). Preclinical evidence supports the existence of antioxidant and anti-inflammatory properties exerted by the polyphenol oleocanthal, which belongs to the EVOO minor polar compound subclass of secoiridoids (like oleuropein). This narrative review aims to describe the antioxidant and anti-inflammatory properties of oleocanthal, as well as the potential anticancer and neuroprotective actions of this polyphenol. Based on recent evidence, we also discuss the reasons underlying the need to include the concentrations of oleocanthal and other polyphenols in the EVOO's nutrition facts label. Finally, we report our personal experience in the production of a certified organic EVOO with a "Protected Designation of Origin" (PDO), which was obtained from olives of three different cultivars (Rotondella, Frantoio, and Leccino) harvested in geographical areas located a short distance from one another (villages' names: Gorga and Camella) within the Southern Italy "Cilento, Vallo di Diano and Alburni National Park" of the Campania Region (Province of Salerno, Italy).


Assuntos
Dieta Mediterrânea , Olea , Humanos , Azeite de Oliva/análise , Antioxidantes/farmacologia , Polifenóis , Anti-Inflamatórios
2.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328530

RESUMO

Parkinson's disease (PD) is second-most common disabling neurological disorder worldwide, and unfortunately, there is not yet a definitive way to prevent it. Polyphenols have been widely shown protective efficacy against various PD symptoms. However, data on their effect on physio-pathological mechanisms underlying this disease are still lacking. In the present work, we evaluated the activity of a mixture of polyphenols and micronutrients, named A5+, in the murine neuroblastoma cell line N1E115 treated with 6-Hydroxydopamine (6-OHDA), an established neurotoxic stimulus used to induce an in vitro PD model. We demonstrate that a pretreatment of these cells with A5+ causes significant reduction of inflammation, resulting in a decrease in pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α, and CXCL1), a reduction in ROS production and activation of extracellular signal-regulated kinases (ERK)1/2, and a decrease in apoptotic mechanisms with the related increase in cell viability. Intriguingly, A5+ treatment promoted cellular differentiation into dopaminergic neurons, as evident by the enhancement in the expression of tyrosine hydroxylase, a well-established dopaminergic neuronal marker. Overall, these results demonstrate the synergic and innovative efficacy of A5+ mixture against PD cellular pathological processes, although further studies are needed to clarify the mechanisms underlying its beneficial effect.


Assuntos
Doença de Parkinson , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos , Micronutrientes/metabolismo , Micronutrientes/farmacologia , Micronutrientes/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
3.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808574

RESUMO

COVID-19 is without any doubt the worst pandemic we have faced since the H1N1 virus outbreak. Even if vaccination against SARS-CoV-2 infection is becoming increasingly available, a more feasible approach for COVID-19 prevention and therapy is still needed. Evidence of a pathological link between metabolic diseases and severe forms of COVID-19 has stimulated critical reflection and new considerations. In particular, an abnormal immune response observed in certain patients with SARS-CoV-2 infection suggested possible common predisposing risk factors with autoimmune diseases such as Type 1 Diabetes (T1D). Correct supplementation with dietary factors may be key to preventing and counteracting both the underlying metabolic impairment and the complications of COVID-19. A set of agents may inhibit the cytokine storm and hypercoagulability that characterize severe COVID-19 infection: vitamin D3, omega-3 polyunsaturated fatty acids, polyphenols like pterostilbene, polydatin and honokiol, which can activate anti-inflammatory and antioxidant sirtuins pathways, quercetin, vitamin C, zinc, melatonin, lactoferrin and glutathione. These agents could be highly beneficial for subjects who have altered immune responses. In this review, we discuss the antiviral and metabolic effects of these dietary factors and propose their combination for potential applications in the prevention and treatment of COVID-19. Rigorous studies will be fundamental for validating preventive and therapeutic protocols that could be of assistance to mitigate disease progression following SARS-CoV-2 infection.


Assuntos
Doenças Autoimunes/dietoterapia , COVID-19/dietoterapia , Dieta , Doenças Metabólicas/dietoterapia , Doenças Autoimunes/complicações , COVID-19/complicações , Síndrome da Liberação de Citocina/dietoterapia , Síndrome da Liberação de Citocina/etiologia , Progressão da Doença , Humanos , Doenças Metabólicas/complicações , Trombofilia/dietoterapia , Trombofilia/etiologia
4.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360753

RESUMO

Activation of innate immunity and low-grade inflammation contributes to hyperglycemia and an onset of Type 2 Diabetes Mellitus (T2DM). Interleukin-2 (IL-2), leptin, High Mobility Group Box-1 (HMGB-1), and increased glucose concentrations are mediators of these processes also by modulating peripheral blood mononuclear cells (PBMCs) response. The aim of this study was to investigate if HMGB-1 and IL-2 turn on PBMCs and their leptin secretion. In isolated human PBMCs and their subpopulations from healthy individuals and naïve T2DM patients, leptin release, pro-inflammatory response and Toll-like Receptors (TLRs) activation was measured. After treatment with IL-2 and HMGB1, NK (Natural Killer) have the highest amount of leptin secretion, whilst NK-T have the maximal release in basal conditions. TLR4 (TAK242) and/or TLR2 (TLR2-IgA) inhibitors decreased leptin secretion after IL-2 and HMGB1 treatment. A further non-significant increase in leptin secretion was reported in PBMCs of naive T2DM patients in response to IL-2 and HMGB-1 stimulation. Finally, hyperglycemia or hyperinsulinemia might stimulate leptin secretion from PBMCs. The amount of leptin released from PBMCs after the different treatments was enough to stimulate the secretion of IL-1ß from monocytes. Targeting leptin sera levels and secretion from PBMCs could represent a new therapeutic strategy to counteract metabolic diseases such as T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteína HMGB1/farmacologia , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Interleucina-2/farmacologia , Leptina/metabolismo , Leucócitos Mononucleares/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Hiperglicemia/patologia , Hiperinsulinismo/patologia , Leucócitos Mononucleares/patologia
5.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557786

RESUMO

Sirtuins (SIRTs) are seven nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases enzymes (SIRT1-7) that play an important role in maintaining cellular homeostasis. Among those, the most studied are SIRT1 and SIRT3, a nuclear SIRT and a mitochondrial SIRT, respectively, which significantly impact with an increase in mammals' lifespan by modulating metabolic cellular processes. Particularly, when activated, both SIRT1 and 3 enhance pancreatic ß-cells' insulin release and reduce inflammation and oxidative stress pancreatic damage, maintaining then glucose homeostasis. Therefore, SIRT1 and 3 activators have been proposed to prevent and counteract metabolic age-related diseases, such as type 2 diabetes mellitus (T2DM). Physical activity (PA) has a well-established beneficial effect on phenotypes of aging like ß-cell dysfunction and diabetes mellitus. Recent experimental and clinical evidence reports that PA increases the expression levels of both SIRT1 and 3, suggesting that PA may exert its healthy contribute even by activating SIRTs. Therefore, in the present article, we discuss the role of SIRT1, SIRT3, and PA on ß-cell function and on diabetes. We also discuss the possible interaction between PA and activation of SIRTs as a possible therapeutic strategy to maintain glucose hemostasis and to prevent T2DM and its complications, especially in the elderly population.


Assuntos
Glucose/metabolismo , Homeostase , Sirtuína 1/química , Sirtuína 3/química , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Suscetibilidade a Doenças , Exercício Físico , Humanos , Células Secretoras de Insulina/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo
6.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331067

RESUMO

Neurodegenerative diseases are among the leading causes of mortality and disability worldwide. However, current therapeutic approaches have failed to reach significant results in their prevention and cure. Protein Kinase Cs (PKCs) are kinases involved in the pathophysiology of neurodegenerative diseases, such as Alzheimer's Disease (AD) and cerebral ischemia. Specifically ε, δ, and γPKC are associated with the endogenous mechanism of protection referred to as ischemic preconditioning (IPC). Existing modulators of PKCs, in particular of εPKC, such as ψεReceptor for Activated C-Kinase (ψεRACK) and Resveratrol, have been proposed as a potential therapeutic strategy for cerebrovascular and cognitive diseases. PKCs change in expression during aging, which likely suggests their association with IPC-induced reduction against ischemia and increase of neuronal loss occurring in senescent brain. This review describes the link between PKCs and cerebrovascular and cognitive disorders, and proposes PKCs modulators as innovative candidates for their treatment. We report original data showing εPKC reduction in levels and activity in the hippocampus of old compared to young rats and a reduction in the levels of δPKC and γPKC in old hippocampus, without a change in their activity. These data, integrated with other findings discussed in this review, demonstrate that PKCs modulators may have potential to restore age-related reduction of endogenous mechanisms of protection against neurodegeneration.


Assuntos
Encéfalo/metabolismo , Neuroproteção , Proteína Quinase C/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Proteína Quinase C/química , Proteína Quinase C/genética , Transdução de Sinais/efeitos dos fármacos
7.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068419

RESUMO

Background: Diabetes mellitus (DM) is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF)-2b controls ß-cell clusters via autocrine action, and human placental lactogen (hPL)-A increases functional ß-cells. We hypothesized whether FGF-2b/hPL-A treatment induces ß-cell differentiation from ductal/non-endocrine precursor(s) by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1) and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05) increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1), Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2), compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9) were decreased (p < 0.05). These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.


Assuntos
Diferenciação Celular , Fator 2 de Crescimento de Fibroblastos/fisiologia , Células Secretoras de Insulina , Ductos Pancreáticos/fisiologia , Lactogênio Placentário/fisiologia , Diabetes Mellitus/terapia , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares , Ductos Pancreáticos/citologia , Ductos Pancreáticos/metabolismo , Lactogênio Placentário/metabolismo , Medicina Regenerativa/métodos , Fatores de Transcrição
8.
Curr Opin Lipidol ; 27(2): 187-95, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26959706

RESUMO

PURPOSE OF REVIEW: Cerebrovascular disease (CeVD) remains a major cause of death and a leading cause of disability worldwide. CeVD is a complex and multifactorial disease caused by the interaction of vascular risk factors, environment, and genetic factors. In the present article, we discussed genetic susceptibility to CeVD, with particular emphasis on genetic studies of the associations between lipid traits and CeVD. RECENT FINDINGS: Several animal and clinical studies clearly defined genetic predisposition to atherosclerosis and CeVD, and particularly to ischemic stroke. Recent evidence has shown that traditional vascular risk factors explain only a small proportion of variance in atherosclerosis, suggesting that additional nontraditional factors and novel genetic determinants impact CeVD. With the help of genome-wide technology, novel genetic variants have been implicated in CeVD and lipid metabolism such as those in protein convertase subtilisin/kexin type 9 (PCSK9) gene in stroke and familial hypercholesterolemia. These studies are important as they contribute to our understanding of the genetic mechanisms underlying CeVD and to developing more effective CeVD prevention strategies. SUMMARY: CeVD is a complex and multifactorial disease and genetics likely plays an important role in its pathogenesis. The gene-gene and gene-environment interactions of genes involved in biology of vascular disease, including the lipid metabolism are important factors for individual susceptibility to CeVD. Accounting for individual variation in genes, environment and lifestyle will bring us closer to precision medicine, which is an emerging and recently introduced new approach for disease treatment and prevention in clinical practice.


Assuntos
Transtornos Cerebrovasculares/genética , Animais , Dislipidemias/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Metabolismo dos Lipídeos
9.
Pharmacol Res ; 111: 659-667, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27461137

RESUMO

Epsilon Protein kinase C (εPCK) is a particular kinase that, when activated, is able to protect against different stress injuries and therefore has been proposed to be a potential molecular target against acute and chronic diseases. Particular attention has been focused on εPCK for its involvement in the protective mechanism of Ischemic Preconditioning (IPC), a powerful endogenous mechanism characterized by subthreshold ischemic insults able to protect organs against ischemic injury. Therefore, in the past decades several εPCK modulators have been tested with the object to emulate εPCK mediate protection. Among these the most promising, so far, has been the ΨεRACK peptide, a homologous of RACK receptor for εPKC, that when administrated can mimic its effect in the cells. However, results from studies on εPCK indicate controversial role of this kinase in different organs and diseases, such as myocardial infarct, stroke, diabetes and cancer. Therefore, in this review we provide a discussion on the function of εPCK in acute and chronic diseases and how the different activators and inhibitors have been used to modulate its activity. A better understanding of its function is still needed to definitively target εPCK as novel therapeutic strategy.


Assuntos
Proteína Quinase C-épsilon/metabolismo , Doença Aguda , Animais , Doença Crônica , Cardiopatias/metabolismo , Cardiopatias/prevenção & controle , Humanos , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Neuroproteção
10.
Am J Physiol Endocrinol Metab ; 308(9): E744-55, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25714671

RESUMO

Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications.


Assuntos
Diabetes Mellitus/metabolismo , Fígado/metabolismo , Proteoma/metabolismo , Receptor de Insulina/genética , Animais , Diabetes Mellitus/genética , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas/metabolismo , Proteômica
11.
Free Radic Biol Med ; 220: 262-270, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729451

RESUMO

Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.


Assuntos
Envelhecimento , Polimorfismo de Nucleotídeo Único , Sirtuínas , Humanos , Sirtuínas/genética , Sirtuínas/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Rigidez Vascular/genética , Espessura Intima-Media Carotídea , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo , Predisposição Genética para Doença , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia
12.
Immunotherapy ; 15(13): 1009-1019, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401348

RESUMO

Herein, we describe an unusually prolonged duration (31 months) of the clinical remission phase in a 22-year-old Italian man with new-onset type 1 diabetes. Shortly after the disease diagnosis, the patient was treated with calcifediol (also known as 25-hydroxyvitamin D3 or calcidiol), coupled with low-dose basal insulin, to correct hypovitaminosis D and to exploit the anti-inflammatory and immunomodulatory properties of vitamin D. During the follow-up period, the patient retained a substantial residual ß-cell function and remained within the clinical remission phase, as evidenced by an insulin dose-adjusted glycated hemoglobin value <9. At 24 months, we detected a peculiar immunoregulatory profile of peripheral blood cells, which may explain the prolonged duration of the clinical remission sustained by calcifediol as add-on treatment to insulin.


We describe the case of a 22-year-old Italian man who was treated with a form of vitamin D called calcifediol shortly after the diagnosis of type 1 diabetes, which is an autoimmune condition leading to insulin deficiency and to the lifelong need for insulin therapy. Calcifediol was administered, coupled with low-dose insulin, to correct vitamin D insufficiency and to exploit the anti-inflammatory properties of vitamin D. During the follow-up period (31 months), the patient unexpectedly remained on once-daily insulin injection therapy and maintained near-normal blood glucose levels. These findings suggest that calcifediol administration may represent a valid add-on treatment to insulin, with the aim of reducing daily insulin requirements and improving glucose control in patients with recent-onset type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Deficiência de Vitamina D , Masculino , Humanos , Adulto Jovem , Adulto , Calcifediol/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Vitamina D/uso terapêutico , Insulina/uso terapêutico
13.
Life (Basel) ; 13(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38137846

RESUMO

BACKGROUND: Space travel has always been one of mankind's greatest dreams. Thanks to technological innovation, this dream is becoming more of a reality. Soon, humans (not only astronauts) will travel, live, and work in space. However, a microgravity environment can induce several pathological alterations that should be, at least in part, controlled and alleviated. Among those, glucose homeostasis impairment and insulin resistance occur, which can lead to reduced muscle mass and liver dysfunctions. Thus, it is relevant to shed light on the mechanism underlaying these pathological conditions, also considering a nutritional approach that can mitigate these effects. METHODS: To achieve this goal, we used Prdx6-/- mice exposed to Hindlimb Unloading (HU), a well-established experimental protocol to simulate microgravity, fed with a chow diet or an omega-3-enriched diet. RESULTS: Our results innovatively demonstrated that HU-induced metabolic alterations, mainly related to glucose metabolism, may be mitigated by the administration of omega-3-enriched diet. Specifically, a significant improvement in insulin resistance has been reported. CONCLUSIONS: Although preliminary, our results highlight the importance of specific nutritional approaches that can alleviate microgravity-induced harmful effects. These findings should be considered soon by those planning trips around the earth.

14.
Cells ; 12(22)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998340

RESUMO

Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-ß-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.


Assuntos
Mitofagia , Sirtuína 3 , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/genética , Micronutrientes , Senescência Celular , Doxorrubicina/farmacologia
15.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899850

RESUMO

Background: Obesity is a pandemic disease characterized by excessive severe body comorbidities. Reduction in fat accumulation represents a mechanism of prevention, and the replacement of white adipose tissue (WAT) with brown adipose tissue (BAT) has been proposed as one promising strategy against obesity. In the present study, we sought to investigate the ability of a natural mixture of polyphenols and micronutrients (A5+) to counteract white adipogenesis by promoting WAT browning. Methods: For this study, we employed a murine 3T3-L1 fibroblast cell line treated with A5+, or DMSO as control, during the differentiation in mature adipocytes for 10 days. Cell cycle analysis was performed using propidium iodide staining and cytofluorimetric analysis. Intracellular lipid contents were detected by Oil Red O staining. Inflammation Array, along with qRT-PCR and Western Blot analyses, served to measure the expression of the analyzed markers, such as pro-inflammatory cytokines. Results: A5+ administration significantly reduced lipids' accumulation in adipocytes when compared to control cells (p < 0.005). Similarly, A5+ inhibited cellular proliferation during the mitotic clonal expansion (MCE), the most relevant stage in adipocytes differentiation (p < 0.0001). We also found that A5+ significantly reduced the release of pro-inflammatory cytokines, such as IL-6 and Leptin (p < 0.005), and promoted fat browning and fatty acid oxidation through increasing expression levels of genes related to BAT, such as UCP1 (p < 0.05). This thermogenic process is mediated via AMPK-ATGL pathway activation. Conclusion: Overall, these results demonstrated that the synergistic effect of compounds contained in A5+ may be able to counteract adipogenesis and then obesity by inducing fat browning.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Polifenóis/farmacologia , Micronutrientes/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo
16.
Front Endocrinol (Lausanne) ; 13: 842575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370943

RESUMO

In pancreatic beta cells, mitochondrial metabolism controls glucose-stimulated insulin secretion (GSIS) by ATP production, redox signaling, and calcium (Ca2+) handling. Previously, we demonstrated that knockout mice for peroxiredoxin 6 (Prdx6-/- ), an antioxidant enzyme with both peroxidase and phospholipase A2 activity, develop a mild form of diabetes mellitus with a reduction in GSIS and in peripheral insulin sensitivity. However, whether the defect of GSIS present in these mice is directly modulated by Prdx6 is unknown. Therefore, the main goal of the present study was to evaluate if depletion of Prdx6 affects directly GSIS and pancreatic beta ß-cell function. Murine pancreatic ß-cell line (ßTC6) knockdown for Prdx6 (Prdx6KD) was employed, and insulin secretion, ATP, and intracellular Ca2+ content were assessed in response to glucose stimulation. Mitochondrial morphology and function were also evaluated through electron microscopy, and by testing mitochondrial membrane potential, oxygen consumption, and mitochondrial mass. Prdx6KD cells showed a significant reduction in GSIS as confirmed by decrease in both ATP release and Ca2+ influx. GSIS alteration was also demonstrated by a marked impairment of mitochondrial morphology and function. These latest are mainly linked to mitofusin downregulation, which are, in turn, strictly related to mitochondrial homeostasis (by regulating autophagy) and cell fate (by modulating apoptosis). Following a pro-inflammatory stimulus (typical of diabetic subjects), and in agreement with the deregulation of mitofusin steady-state levels, we also observed an enhancement in apoptotic death in Prdx6KD compared to control cells. We analyzed molecular mechanisms leading to apoptosis, and we further demonstrated that Prdx6 suppression activates both intrinsic and extrinsic apoptotic pathways, ultimately leading to caspase 3 and PARP-1 activation. In conclusion, Prdx6 is the first antioxidant enzyme, in pancreatic ß-cells, that by controlling mitochondrial homeostasis plays a pivotal role in GSIS modulation.


Assuntos
Células Secretoras de Insulina , Peroxirredoxina VI , Animais , Apoptose , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Dinâmica Mitocondrial , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo
17.
Vaccines (Basel) ; 10(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35891261

RESUMO

Type 1 diabetes (T1D), which is caused by the autoimmune destruction of insulin-secreting pancreatic beta cells, represents a high-risk category requiring COVID-19 vaccine prioritization. Although COVID-19 vaccination can lead to transient hyperglycemia (vaccination-induced hyperglycemia; ViHG), its influence on the course of the clinical remission phase of T1D (a.k.a. "honeymoon phase") is currently unknown. Recently, there has been an increasing concern that COVID-19 vaccination may trigger autoimmune phenomena. We describe the case of a 24-year-old young Italian man with T1D who received two doses of the BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccine during a prolonged honeymoon phase. He experienced a transient impairment in glucose control (as evidenced by continuous glucose monitoring) that was not associated with substantial changes in stimulated C-peptide levels and islet autoantibody titers. Nonetheless, large prospective studies are needed to confirm the safety and the immunometabolic impact of the BNT162b2 vaccine in T1D patients during the honeymoon phase. Thus far, T1D patients who are going to receive COVID-19 vaccination should be warned about the possible occurrence of transient ViHG and should undergo strict postvaccination surveillance.

18.
Nutrients ; 13(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205679

RESUMO

A protective effect of vegan diets on health outcomes has been observed in previous studies, but its impact on diabetes is still debated. The aim of this review is to assess the relationship between vegan diets and the risk for type 2 diabetes (T2D) along with its effect on glycemic control and diabetes-related complications. In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, Pubmed and Cochrane library databases were systematically searched for all relevant studies. Seven observational and eight randomized controlled (RCTs) studies were included. The methodological quality of studies was assessed using the National Institutes of Health quality assessment tool for observational cohort and cross-sectional studies and the Cochrane Risk of Bias Tool for RCTs. We found that a vegan diet is associated with lower T2D prevalence or incidence and in T2D patients decreases high glucose values and improves glucose homeostasis, as reported from the majority of included studies. This approach seems to be comparable to other recommended healthful eating models, but as it may have potential adverse effects associated with the long-term exclusion of some nutrients, appropriate nutritional planning and surveillance are recommended, particularly in specific groups of diabetic patients such as frail elderly, adolescents, and pregnant or breastfeeding women.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Vegana , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Controle Glicêmico , Humanos , Incidência , Masculino , Estudos Observacionais como Assunto , Prevalência , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Biomedicines ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829949

RESUMO

Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect.

20.
Cell Death Dis ; 12(8): 773, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354045

RESUMO

The pathophysiology of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and especially of its complications is still not fully understood. In fact, a very high number of patients with COVID-19 die because of thromboembolic causes. A role of plasminogen, as precursor of fibrinolysis, has been hypothesized. In this study, we aimed to investigate the association between plasminogen levels and COVID-19-related outcomes in a population of 55 infected Caucasian patients (mean age: 69.8 ± 14.3, 41.8% female). Low levels of plasminogen were significantly associated with inflammatory markers (CRP, PCT, and IL-6), markers of coagulation (D-dimer, INR, and APTT), and markers of organ dysfunctions (high fasting blood glucose and decrease in the glomerular filtration rate). A multidimensional analysis model, including the correlation of the expression of coagulation with inflammatory parameters, indicated that plasminogen tended to cluster together with IL-6, hence suggesting a common pathway of activation during disease's complication. Moreover, low levels of plasminogen strongly correlated with mortality in COVID-19 patients even after multiple adjustments for presence of confounding. These data suggest that plasminogen may play a pivotal role in controlling the complex mechanisms beyond the COVID-19 complications, and may be useful both as biomarker for prognosis and for therapeutic target against this extremely aggressive infection.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Plasminogênio/análise , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Coagulação Sanguínea , COVID-19/diagnóstico , Regulação para Baixo , Feminino , Humanos , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Medição de Risco , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA