Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 22(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591210

RESUMO

Developing an inexpensive, sensitive, and point-of-use biosensor for pesticide detection is becoming an important area in sensing. Such sensors can be used in food packaging, agricultural fields, and environmental monitoring of pesticides. The present investigation has developed a zinc oxide (ZnO)-based biosensor on porous, flexible substrates such as carbon paper and carbon cloth to detect organophosphates such as paraoxon (OP). Here, the influence of morphology and underlying substrate on biosensor performance was studied. The biosensors were fabricated by immobilizing the acetylcholinesterase (AChE) enzyme on ZnO, which is directly grown on the flexible substrates. The ZnO biosensors fabricated on the carbon cloth demonstrated good performance with the detection limit of OP in the range of 0.5 nM-5 µM, higher sensitivity, and greater stability.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Praguicidas , Óxido de Zinco , Acetilcolinesterase/química , Carbono , Enzimas Imobilizadas/química , Paraoxon , Praguicidas/análise , Porosidade , Óxido de Zinco/química
2.
J Nanosci Nanotechnol ; 18(5): 3492-3498, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442856

RESUMO

Gold (Au) nanostructures exhibit unique electronic, optoelectronic and plasmonic properties. This makes them potential candidates for applications in areas including biosensing, catalysis, optics, and electronics. These unique properties are governed by the precise control over their morphologies and size. The present work investigates the electrodeposition process of Au nanostructures. Additionally, the influence of applied potential, electrolyte pH and presence of L-cysteine on the morphology, size, distribution and density of Au nanostructured was studied. The observations elucidated the relationship between the process parameters and the formation mechanism of the Au nanostructures. The morphology and composition of these Au nanostructures were characterized by scanning electron microscopy and X-ray diffraction respectively.


Assuntos
Galvanoplastia , Ouro , Nanoestruturas , Catálise , Microscopia Eletrônica de Varredura
3.
Sensors (Basel) ; 18(1)2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316659

RESUMO

Noble transition metals, like palladium (Pd) and platinum (Pt), have been well-known for their excellent catalytic and electrochemical properties. However, they have been considered non-active for surface enhanced Raman spectroscopy (SERS). In this work, we explore the scattering contributions of Pd and Pt for the detection of organic molecules. The Pd and Pt nanostructures were synthesized on silicon substrate using a modified galvanic displacement method. The results show Pt nanoparticles and dendritic Pd nanostructures with controlled density and size. The influence of surfactants, including sodium dodecyl sulfate and cetyltrimethylammonium bromide, on the size and morphology of the nanostructures was investigated. The Pd and Pt nanostructures with a combination of large size and high density were then used to explore their applicability for the detection of 10-5 M Rhodamine 6G and 10-2 M paraoxon.

4.
Sensors (Basel) ; 18(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060494

RESUMO

Gold (Au) has been widely used as a material for Surface Enhanced Raman Spectroscopy (SERS) due to its plasmonic properties, stability and biocompatibility. Conventionally for SERS application, Au is deposited on a rigid substrate such as glass or silicon. The rigid substrates severely limit analyte collection efficiency as well as portability. Here, flexible substrates like carbon cloth and carbon paper were investigated as potential substrate candidates for SERS application. The flexible substrates were coated with Au nanostructures by electrodeposition. Model analyte, Rhodamine 6G was utilized to demonstrate the capabilities of the flexible SERS substrates. Additionally, the pesticide paraoxon was also detected on the flexible SERS substrates as well as on a real sample like the apple fruit.

5.
Sensors (Basel) ; 17(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837062

RESUMO

Copper (I) oxide (Cu2O) is an appealing semiconducting oxide with potential applications in various fields ranging from photovoltaics to biosensing. The precise control of size and shape of Cu2O nanostructures has been an area of intense research. Here, the electrodeposition of Cu2O nanoparticles is presented with precise size variations by utilizing ethylenediamine (EDA) as a size controlling agent. The size of the Cu2O nanoparticles was successfully varied between 54.09 nm to 966.97 nm by changing the concentration of EDA in the electrolytic bath during electrodeposition. The large surface area of the Cu2O nanoparticles present an attractive platform for immobilizing glucose oxidase for glucose biosensing. The fabricated enzymatic biosensor exhibited a rapid response time of <2 s. The limit of detection was 0.1 µM and the sensitivity of the glucose biosensor was 1.54 mA/cm². mM. The Cu2O nanoparticles were characterized by UV-Visible spectroscopy, scanning electron microscopy and X-ray diffraction.


Assuntos
Técnicas Biossensoriais , Cobre , Eletrodos , Glucose , Nanopartículas , Óxidos
6.
Nano Lett ; 13(11): 5123-8, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24099617

RESUMO

GaN-InGaN core-shell nanowire array devices are characterized by spectrally resolved scanning photocurrent microscopy (SPCM). The spatially resolved external quantum efficiency is correlated with structure and composition inferred from atomic force microscope (AFM) topography, scanning transmission electron microscope (STEM) imaging, Raman microspectroscopy, and scanning photocurrent microscopy (SPCM) maps of the effective absorption edge. The experimental analyses are coupled with finite difference time domain simulations to provide mechanistic understanding of spatial variations in carrier generation and collection, which is essential to the development of heterogeneous novel architecture solar cell devices.

7.
Nano Lett ; 13(9): 4317-25, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23919559

RESUMO

Correlated atom probe tomography, cross-sectional scanning transmission electron microscopy, and cathodoluminescence spectroscopy are used to analyze InGaN/GaN multiquantum wells (QWs) in nanowire array light-emitting diodes (LEDs). Tomographic analysis of the In distribution, interface morphology, and dopant clustering reveals material quality comparable to that of planar LED QWs. The position-dependent CL emission wavelength of the nonpolar side-facet QWs and semipolar top QWs is correlated with In composition.


Assuntos
Gálio/química , Nanotecnologia , Índio/química , Luz , Nanofios/química , Semicondutores
8.
Langmuir ; 26(11): 8497-502, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20143858

RESUMO

Biological systems such as proteins, viruses, and DNA have been most often reported to be used as templates for the synthesis of functional nanomaterials, but the properties of widely available biopolymers, such as cellulose, have been much less exploited for this purpose. Here, we report for the first time that cellulose nanocrystals (CNC) have the capacity to assist in the synthesis of metallic nanoparticle chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was critical to nanoparticle stabilization and CNC surface modification. Silver, gold, copper, and platinum nanoparticles were synthesized on CNCs, and the nanoparticle density and particle size were controlled by varying the concentration of CTAB, the pH of the salt solution, and the reduction time.


Assuntos
Biopolímeros/química , Nanoestruturas , Tensoativos/química
9.
Nanomaterials (Basel) ; 10(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235596

RESUMO

Gold (Au) and copper (Cu)-based nanostructures are of great interest due to their applicability in various areas including catalysis, sensing and optoelectronics. Nanostructures synthesized by the galvanic displacement method often lead to non-uniform density and poor size distribution. Here, density and size-controlled synthesis of Au and Cu-based nanostructures was made possible by galvanic displacement with limited exposure to hydrofluoric (HF) acid and the use of surfactants like L-cysteine (L-Cys) and cetyltrimethylammonium bromide (CTAB). An approach involving cyclic exposure to HF acid regulated the nanostructure density. Further, the use of surfactants generated monodisperse nanoparticles in the initial stages of the deposition with increased density. The characterization of Au and Cu-based nanostructures was performed by scanning electron microscopy, atomic force microscopy, UV-Visible spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. The surface enhanced Raman spectroscopic measurements demonstrated an increase in the Raman intensity by two to three orders of magnitude for analyte molecules like Rhodamine 6G dye and paraoxon.

10.
Mol Neurodegener ; 15(1): 49, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900375

RESUMO

BACKGROUND: α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. METHODS: Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test. RESULTS: Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. CONCLUSIONS: Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.


Assuntos
Agregação Patológica de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Animais , Humanos , Camundongos , Neurônios/patologia , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Sprague-Dawley
11.
Ultramicroscopy ; 108(4): 309-13, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17544217

RESUMO

We report a new sample preparation method that allows the direct transmission electron microscopy evaluation of the architectural characteristics of biomolecules entrapped in gel matrices. We demonstrate that this sample preparation technique can be used for the identification and ultrastructural characterization of liposomes, collagen I and collagen III embedded in gel matrices, and has the potential to be useful for transmission electron microscopy (TEM) characterization of other biomolecule-gel matrix systems.


Assuntos
Materiais Biocompatíveis/química , Microscopia Eletrônica de Transmissão/métodos , Colágeno Tipo I/ultraestrutura , Colágeno Tipo III/ultraestrutura , Géis , Lipossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA