Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732025

RESUMO

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição , Células-Tronco Neoplásicas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Genes Dev ; 36(7-8): 495-510, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483740

RESUMO

The identity of human protein-coding genes is well known, yet our in-depth knowledge of their molecular functions and domain architecture remains limited by shortcomings in homology-based predictions and experimental approaches focused on whole-gene depletion. To bridge this knowledge gap, we developed a method that leverages CRISPR-Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, we applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. We validated screen outcomes for 15 regions, including amino acids 387-402 of Mad1, which were previously uncharacterized but contribute to Mad1 kinetochore localization and chromosome segregation fidelity. Altogether, we demonstrate that CRISPR-Cas9-based tiling mutagenesis identifies key functional domains in protein-coding genes de novo, which elucidates separation of function mutants and allows functional annotation across the human proteome.


Assuntos
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Humanos , Mutagênese
3.
Genes Dev ; 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008139

RESUMO

YAP1 is a transcriptional coactivator regulated by the Hippo signaling pathway, including NF2. Meningiomas are the most common primary brain tumors; a large percentage exhibit heterozygous loss of chromosome 22 (harboring the NF2 gene) and functional inactivation of the remaining NF2 copy, implicating oncogenic YAP activity in these tumors. Recently, fusions between YAP1 and MAML2 have been identified in a subset of pediatric NF2 wild-type meningiomas. Here, we show that human YAP1-MAML2-positive meningiomas resemble NF2 mutant meningiomas by global and YAP-related gene expression signatures. We then show that expression of YAP1-MAML2 in mice induces tumors that resemble human YAP1 fusion-positive and NF2 mutant meningiomas by gene expression. We demonstrate that YAP1-MAML2 primarily functions by exerting TEAD-dependent YAP activity that is resistant to Hippo signaling. Treatment with YAP-TEAD inhibitors is sufficient to inhibit the viability of YAP1-MAML2-driven mouse tumors ex vivo. Finally, we show that expression of constitutively active YAP1 (S127/397A-YAP1) is sufficient to induce similar tumors, suggesting that the YAP component of the gene fusion is the critical driver of these tumors. In summary, our results implicate YAP1-MAML2 as a causal oncogenic driver and highlight TEAD-dependent YAP activity as an oncogenic driver in YAP1-MAML2 fusion meningioma as well as NF2 mutant meningioma in general.

4.
Cell ; 153(2): 335-47, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582324

RESUMO

Factors that sustain self-renewal of mouse embryonic stem cells (ESCs) are well described. In contrast, the machinery regulating exit from pluripotency is ill defined. In a large-scale small interfering RNA (siRNA) screen, we found that knockdown of the tumor suppressors Folliculin (Flcn) and Tsc2 prevent ESC commitment. Tsc2 lies upstream of mammalian target of rapamycin (mTOR), whereas Flcn acts downstream and in parallel. Flcn with its interaction partners Fnip1 and Fnip2 drives differentiation by restricting nuclear localization and activity of the bHLH transcription factor Tfe3. Conversely, enforced nuclear Tfe3 enables ESCs to withstand differentiation conditions. Genome-wide location and functional analyses showed that Tfe3 directly integrates into the pluripotency circuitry through transcriptional regulation of Esrrb. These findings identify a cell-intrinsic rheostat for destabilizing ground-state pluripotency to allow lineage commitment. Congruently, stage-specific subcellular relocalization of Tfe3 suggests that Flcn-Fnip1/2 contributes to developmental progression of the pluripotent epiblast in vivo.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Redes Reguladoras de Genes , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Células-Tronco Embrionárias/metabolismo , Estrona/genética , Estrona/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo
5.
Genes Dev ; 34(15-16): 1051-1064, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675324

RESUMO

YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Sinais de Localização Nuclear , Motivos de Nucleotídeos , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
PLoS Pathog ; 19(1): e1011101, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706161

RESUMO

Transcriptional silencing of latent HIV-1 proviruses entails complex and overlapping mechanisms that pose a major barrier to in vivo elimination of HIV-1. We developed a new latency CRISPR screening strategy, called Latency HIV-CRISPR which uses the packaging of guideRNA-encoding lentiviral vector genomes into the supernatant of budding virions as a direct readout of factors involved in the maintenance of HIV-1 latency. We developed a custom guideRNA library targeting epigenetic regulatory genes and paired the screen with and without a latency reversal agent-AZD5582, an activator of the non-canonical NFκB pathway-to examine a combination of mechanisms controlling HIV-1 latency. A component of the Nucleosome Acetyltransferase of H4 histone acetylation (NuA4 HAT) complex, ING3, acts in concert with AZD5582 to activate proviruses in J-Lat cell lines and in a primary CD4+ T cell model of HIV-1 latency. We found that the knockout of ING3 reduces acetylation of the H4 histone tail and BRD4 occupancy on the HIV-1 LTR. However, the combination of ING3 knockout accompanied with the activation of the non-canonical NFκB pathway via AZD5582 resulted in a dramatic increase in initiation and elongation of RNA Polymerase II on the HIV-1 provirus in a manner that is nearly unique among all cellular promoters.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Histonas/metabolismo , Proteínas Nucleares/metabolismo , HIV-1/fisiologia , Fatores de Transcrição/metabolismo , Latência Viral/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Soropositividade para HIV/genética , Provírus/genética , Linfócitos T CD4-Positivos , Proteínas de Homeodomínio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(41): e2208255119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191188

RESUMO

Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1's regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore-microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Aneuploidia , Carcinogênese/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo
8.
Nature ; 547(7663): 355-359, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28678782

RESUMO

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Terapia de Alvo Molecular/tendências , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Interferência de RNA , Transcrição Gênica , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Syst Biol ; 17(6): e9522, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34101353

RESUMO

Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.


Assuntos
Glioblastoma , Células-Tronco Neurais , Animais , Ciclo Celular/genética , Divisão Celular , Humanos , Neurogênese/genética
10.
J Biol Chem ; 295(43): 14666-14677, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32820050

RESUMO

BuGZ is a kinetochore component that binds to and stabilizes Bub3, a key player in mitotic spindle assembly checkpoint signaling. Bub3 is required for kinetochore recruitment of Bub1 and BubR1, two proteins that have essential and distinct roles in the checkpoint. Both Bub1 and BubR1 localize to kinetochores through interactions with Bub3, which are mediated through conserved GLEBS domains in both Bub1 and BubR1. BuGZ also has a GLEBS domain, which is required for its kinetochore localization as well, presumably mediated through Bub3 binding. Although much is understood about the requirements for Bub1 and BubR1 interaction with Bub3 and kinetochores, much less is known regarding BuGZ's requirements. Here, we used a series of mutants to demonstrate that BuGZ kinetochore localization requires only its core GLEBS domain, which is distinct from the requirements for both Bub1 and BubR1. Furthermore, we found that the kinetics of Bub1, BubR1, and BuGZ loading to kinetochores differ, with BuGZ localizing prior to BubR1 and Bub1. To better understand how complexes containing Bub3 and its binding partners are loaded to kinetochores, we carried out size-exclusion chromatography and analyzed Bub3-containing complexes from cells under different spindle assembly checkpoint signaling conditions. We found that prior to kinetochore formation, Bub3 is complexed with BuGZ but not Bub1 or BubR1. Our results point to a model in which BuGZ stabilizes Bub3 and promotes Bub3 loading onto kinetochores in early mitosis, which, in turn, facilitates Bub1 and BubR1 kinetochore recruitment and spindle assembly checkpoint signaling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/análise , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/análise , Proteínas de Ligação a Poli-ADP-Ribose/análise , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Domínios Proteicos , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(21): 5462-5467, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735700

RESUMO

The Fbw7 (F-box/WD repeat-containing protein 7) ubiquitin ligase targets multiple oncoproteins for degradation and is commonly mutated in cancers. Like other pleiotropic tumor suppressors, Fbw7's complex biology has impeded our understanding of how Fbw7 mutations promote tumorigenesis and hindered the development of targeted therapies. To address these needs, we employed a transfer learning approach to derive gene-expression signatures from The Cancer Gene Atlas datasets that predict Fbw7 mutational status across tumor types and identified the pathways enriched within these signatures. Genes involved in mitochondrial function were highly enriched in pan-cancer signatures that predict Fbw7 mutations. Studies in isogenic colorectal cancer cell lines that differed in Fbw7 mutational status confirmed that Fbw7 mutations increase mitochondrial gene expression. Surprisingly, Fbw7 mutations shifted cellular metabolism toward oxidative phosphorylation and caused context-specific metabolic vulnerabilities. Our approach revealed unexpected metabolic reprogramming and possible therapeutic targets in Fbw7-mutant cancers and provides a framework to study other complex, oncogenic mutations.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Metaboloma , Mitocôndrias/metabolismo , Mutação , Respiração Celular , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica , Humanos , Mitocôndrias/patologia , Fosforilação Oxidativa , Estresse Oxidativo , Fosforilação , Ubiquitina , Ubiquitinação
12.
Genes Dev ; 27(9): 1032-45, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23651857

RESUMO

To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing. We found that in GSCs, but not untransformed controls, PHF5A facilitates recognition of exons with unusual C-rich 3' splice sites in thousands of essential genes. PHF5A knockdown in GSCs, but not untransformed NSCs, astrocytes, or fibroblasts, inhibited splicing of these genes, leading to cell cycle arrest and loss of viability. Notably, pharmacologic inhibition of U2 snRNP activity phenocopied PHF5A knockdown in GSCs and also in NSCs or fibroblasts overexpressing MYC. Furthermore, PHF5A inhibition compromised GSC tumor formation in vivo and inhibited growth of established GBM patient-derived xenograft tumors. Our results demonstrate a novel viability requirement for PHF5A to maintain proper exon recognition in brain tumor-initiating cells and may provide new inroads for novel anti-GBM therapeutic strategies.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glioblastoma/fisiopatologia , Interferência de RNA , Animais , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Glioblastoma/genética , Humanos , Camundongos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA , Transativadores , Transplante Heterólogo
13.
Proc Natl Acad Sci U S A ; 114(7): 1619-1624, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143937

RESUMO

Rett syndrome (RS) is a debilitating neurological disorder affecting mostly girls with heterozygous mutations in the gene encoding the methyl-CpG-binding protein MeCP2 on the X chromosome. Because restoration of MeCP2 expression in a mouse model reverses neurologic deficits in adult animals, reactivation of the wild-type copy of MeCP2 on the inactive X chromosome (Xi) presents a therapeutic opportunity in RS. To identify genes involved in MeCP2 silencing, we screened a library of 60,000 shRNAs using a cell line with a MeCP2 reporter on the Xi and found 30 genes clustered in seven functional groups. More than half encoded proteins with known enzymatic activity, and six were members of the bone morphogenetic protein (BMP)/TGF-ß pathway. shRNAs directed against each of these six genes down-regulated X-inactive specific transcript (XIST), a key player in X-chromosome inactivation that encodes an RNA that coats the silent X chromosome, and modulation of regulators of this pathway both in cell culture and in mice demonstrated robust regulation of XIST. Moreover, we show that Rnf12, an X-encoded ubiquitin ligase important for initiation of X-chromosome inactivation and XIST transcription in ES cells, also plays a role in maintenance of the inactive state through regulation of BMP/TGF-ß signaling. Our results identify pharmacologically suitable targets for reactivation of MeCP2 on the Xi and a genetic circuitry that maintains XIST expression and X-chromosome inactivation in differentiated cells.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteína 2 de Ligação a Metil-CpG/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/genética , Inativação do Cromossomo X , Animais , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Camundongos , RNA Interferente Pequeno/genética , Síndrome de Rett/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética
14.
Genes Dev ; 26(22): 2499-511, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23105005

RESUMO

G9a and GLP are conserved protein methyltransferases that play key roles during mammalian development through mono- and dimethylation of histone H3 Lys 9 (H3K9me1/2), modifications associated with transcriptional repression. During embryogenesis, large H3K9me2 chromatin territories arise that have been proposed to reinforce lineage choice by affecting high-order chromatin structure. Here we report that in adult human hematopoietic stem and progenitor cells (HSPCs), H3K9me2 chromatin territories are absent in primitive cells and are formed de novo during lineage commitment. In committed HSPCs, G9a/GLP activity nucleates H3K9me2 marks at CpG islands and other genomic sites within genic regions, which then spread across most genic regions during differentiation. Immunofluorescence assays revealed the emergence of H3K9me2 nuclear speckles in committed HSPCs, consistent with progressive marking. Moreover, gene expression analysis indicated that G9a/GLP activity suppresses promiscuous transcription of lineage-affiliated genes and certain gene clusters, suggestive of regulation of HSPC chromatin structure. Remarkably, HSPCs continuously treated with UNC0638, a G9a/GLP small molecular inhibitor, better retain stem cell-like phenotypes and function during in vitro expansion. These results suggest that G9a/GLP activity promotes progressive H3K9me2 patterning during HSPC lineage specification and that its inhibition delays HSPC lineage commitment. They also inform clinical manipulation of donor-derived HSPCs.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Adulto , Animais , Linhagem da Célula , Células Cultivadas , Cromatina/metabolismo , Ilhas de CpG/genética , Metilação de DNA , Cães , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/efeitos dos fármacos , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Humanos , Camundongos , Quinazolinas/farmacologia
15.
Nat Genet ; 37(11): 1281-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16200065

RESUMO

Loss-of-function phenotypes often hold the key to understanding the connections and biological functions of biochemical pathways. We and others previously constructed libraries of short hairpin RNAs that allow systematic analysis of RNA interference-induced phenotypes in mammalian cells. Here we report the construction and validation of second-generation short hairpin RNA expression libraries designed using an increased knowledge of RNA interference biochemistry. These constructs include silencing triggers designed to mimic a natural microRNA primary transcript, and each target sequence was selected on the basis of thermodynamic criteria for optimal small RNA performance. Biochemical and phenotypic assays indicate that the new libraries are substantially improved over first-generation reagents. We generated large-scale-arrayed, sequence-verified libraries comprising more than 140,000 second-generation short hairpin RNA expression plasmids, covering a substantial fraction of all predicted genes in the human and mouse genomes. These libraries are available to the scientific community.


Assuntos
Biblioteca Gênica , Genoma Humano , Camundongos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Inativação Gênica , Humanos , MicroRNAs/metabolismo , Plasmídeos
16.
NAR Cancer ; 6(2): zcae021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774470

RESUMO

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene FBXO42, which was also predicted to be essential in ∼15% of cell lines derived from a broad range of cancers. Mechanistic studies revealed that, in sensitive cells, FBXO42 activity prevents chromosome alignment defects, mitotic cell cycle arrest and cell death. The cell cycle arrest, but not the cell death, triggered by FBXO42 inactivation could be suppressed by brief exposure to a chemical inhibitor of Mps1, a key spindle assembly checkpoint (SAC) kinase. FBXO42's cancer-essential function requires its F-box and Kelch domains, which are necessary for FBXO42's substrate recognition and targeting by SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex. However, none of FBXO42's previously proposed targets, including ING4, p53 and RBPJ, were responsible for the observed phenotypes. Instead, our results suggest that FBOX42 alters the activity of one or more proteins that perturb chromosome-microtubule dynamics in cancer cells, which in turn leads to induction of the SAC and cell death.

17.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659838

RESUMO

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-like G0 state, and it incorporates a tunable parameter to filter out less certain classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-art methods even while classifying more cell cycle states, including G0. We showcased the versatility of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various normalization methods and gene identifiers. We provide methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover underlying biological signals. The classifier can be used either as an R package integrated with Seurat (https://github.com/plaisier-lab/ccafv2_R) or a PyPI package integrated with scanpy (https://pypi.org/project/ccAFv2/). We proved that ccAFv2 has enhanced accuracy, flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular heterogeneity, and deciphering the molecular mechanisms by which proliferation and quiescence affect cellular processes.

18.
Proteomics ; 13(8): 1325-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401153

RESUMO

Protein kinase signaling regulates human hematopoietic stem/progenitor cell (HSPC) fate, yet little is known about critical pathway substrates. To address this, we have developed and applied a large-scale, empirically optimized phosphopeptide affinity enrichment strategy with high-throughput 2D LC-MS/MS screening to evaluate the phosphoproteome of an isolated human CD34(+) HSPC population. We first used hydrophilic interaction chromatography as a first dimension separation to separate and simplify protein digest mixtures into discrete fractions. Phosphopeptides were then enriched off-line using TiO2 -coated magnetic beads and subsequently detected online by C18 RP nanoflow HPLC using data-dependent MS/MS high-energy collision-activated dissociation fragmentation on a high-performance Orbitrap hybrid tandem mass spectrometer. We identified 15 533 unique phosphopeptides in 3574 putative phosphoproteins. Systematic computational analysis revealed biological pathways and phosphopeptide motifs enriched in CD34(+) HSPC that are markedly different from those observed in an analogous parallel analysis of isolated human T cells, pointing to the possible involvement of specific kinase-substrate relationships within activated cascades driving hematopoietic renewal, commitment, and differentiation.


Assuntos
Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteômica/métodos , Titânio/química , Sítios de Ligação , Complexo CD3/metabolismo , Cromatografia Líquida/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Magnetismo , Fosforilação , Prolina/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Fatores de Transcrição/metabolismo
19.
Nat Genet ; 33(3): 396-400, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12567186

RESUMO

The application of RNA interference (RNAi) to mammalian systems has the potential to revolutionize genetics and produce novel therapies. Here we investigate whether RNAi applied to a well-characterized gene can stably suppress gene expression in hematopoietic stem cells and produce detectable phenotypes in mice. Deletion of the Trp53 tumor suppressor gene greatly accelerates Myc-induced lymphomagenesis, resulting in highly disseminated disease. To determine whether RNAi suppression of Trp53 could produce a similar phenotype, we introduced several Trp53 short hairpin RNAs (shRNAs) into hematopoietic stem cells derived from E(mu)-Myc transgenic mice, and monitored tumor onset and overall pathology in lethally irradiated recipients. Different Trp53 shRNAs produced distinct phenotypes in vivo, ranging from benign lymphoid hyperplasias to highly disseminated lymphomas that paralleled Trp53-/- lymphomagenesis in the E(mu)-Myc mouse. In all cases, the severity and type of disease correlated with the extent to which specific shRNAs inhibited p53 activity. Therefore, RNAi can stably suppress gene expression in stem cells and reconstituted organs derived from those cells. In addition, intrinsic differences between individual shRNA expression vectors targeting the same gene can be used to create an 'epi-allelic series' for dissecting gene function in vivo.


Assuntos
Genes p53 , Linfoma/genética , Interferência de RNA , Alelos , Animais , Genes myc , Transplante de Células-Tronco Hematopoéticas , Hiperplasia , Linfonodos/patologia , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
20.
PLoS One ; 18(6): e0287052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379309

RESUMO

Human CD34+ hematopoietic stem and progenitor cells (HSPCs) are a standard source of cells for clinical HSC transplantations as well as experimental xenotransplantation to generate "humanized mice". To further extend the range of applications of these humanized mice, we developed a protocol to efficiently edit the genomes of human CD34+ HSPCs before transplantation. In the past, manipulating HSPCs has been complicated by the fact that they are inherently difficult to transduce with lentivectors, and rapidly lose their stemness and engraftment potential during in vitro culture. However, with optimized nucleofection of sgRNA:Cas9 ribonucleoprotein complexes, we are now able to edit a candidate gene in CD34+ HSPCs with almost 100% efficiency, and transplant these modified cells in immunodeficient mice with high engraftment levels and multilineage hematopoietic differentiation. The result is a humanized mouse from which we knocked out a gene of interest from their human immune system.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Antígenos CD34 , Técnicas de Inativação de Genes , Sistema Imunitário , Transplante de Células-Tronco Hematopoéticas/métodos , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA