Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408457, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853142

RESUMO

Nitrogen oxides (NOx) are major environmental pollutants and to neutralize this long-term environmental threat, new catalytic methods are needed. Although there are biological denitrification processes involving four different enzymatic reactions to convert nitrate (NO3 -) into dinitrogen (N2), it is unfortunately difficult to apply in industry due to the complexity of the processes. In particular, nitrate is difficult to functionalize because of its chemical stability. Thus, there is no organometallic catalysis to convert nitrate into useful chemicals. Herein, we present a nickel pincer complex that is effective as a bifunctional catalyst to stepwise deoxygenate NO3 - by carbonylation and further through C-N coupling. By using this nickel catalysis, nitrate salts can be selectively transformed into various oximes (>20 substrates) with excellent conversion (>90 %). Here, we demonstrate for the first time that the highly inert nitrate ion can be functionalized to produce useful chemicals by a new organonickel catalysis. Our results show that the NOx conversion and utilization (NCU) technology is a successful pathway for environmental restoration coupled with value-added chemical generation.

2.
J Am Chem Soc ; 144(10): 4585-4593, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35157442

RESUMO

Nitrogen oxide (NOx) conversion is an important process for balancing the global nitrogen cycle. Distinct from the biological NOx transformation, we have devised a synthetic approach to this issue by utilizing a bifunctional metal catalyst for producing value-added products from NOx. Here, we present a novel catalysis based on a Ni pincer system, effectively converting Ni-NOx to Ni-NO via deoxygenation with CO(g). This is followed by transfer of the in situ generated nitroso group to organic substrates, which favorably occurs at the flattened Ni(I)-NO site via its nucleophilic reaction. Successful catalytic production of oximes from benzyl halides using NaNO2 is presented with a turnover number of >200 under mild conditions. In a key step of the catalysis, a nickel(I)-•NO species effectively activates alkyl halides, which is carefully evaluated by both experimental and theoretical methods. Our nickel catalyst effectively fulfills a dual purpose, namely, deoxygenating NOx anions and catalyzing C-N coupling.


Assuntos
Níquel , Catálise
3.
Inorg Chem ; 61(3): 1552-1561, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34989233

RESUMO

The reductive carbonylation of nitroarenes in the presence of MeOH and CO(g) is one of the interesting alternative routes without utilizing toxic phosgene and corrosive HCl generation for the synthesis of industrially useful carbamate compounds that serve as important intermediates for polyurethane production. Since homogeneous palladium catalysts supported by phen (phen = 1,10-phenanthroline) are known to be effective for this catalysis, the heterogenized Pd catalyst was developed using the phen-containing solid support. In this study, we report the synthesis of a phen-based heterogeneous Pd catalyst, Pd@phen-POP, which involves the solvent knitting of a phen scaffold via the Lewis-acid-catalyzed Friedel-Crafts reaction using dichloromethane as a source for linker in the presence of AlCl3 as a catalyst. The resulting solid material has been thoroughly characterized by various physical methods revealing high porosity and surface area. Similar to the homogeneous pallidum catalyst, this heterogeneous catalyst shows efficient reductive carbonylation of various nitroarenes. The catalytic reaction using nitrobenzene as a model compound presents a high turnover number (TON = 530) and a reasonable turnover frequency (TOF = 45 h-1), with a high selectivity (92%) for the carbamate formation. According to the recycling study, the heterogeneous catalyst is recyclable and retains ∼90% of the original reactivity in each cycle.

4.
Inorg Chem ; 60(10): 6881-6888, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33576602

RESUMO

In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of α,ß-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h-1) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of α,ß-unsaturated carbonyl compounds.

5.
ChemSusChem ; 13(7): 1735-1739, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31970875

RESUMO

In the context of CO2 utilization, a number of CO2 conversion methods have been identified in laboratory-scale research; however, only a very few transformations have been successfully scaled up and implemented industrially. The main bottleneck in realizing industrial application of these CO2 conversions is the lack of industrially viable catalytic systems and the need for practically implementable process developments. In this study, a simple, highly efficient and recyclable ruthenium-grafted bisphosphine-based porous organic polymer (Ru@PP-POP) catalyst has been developed for the hydrogenation of CO2 to N,N-dimethylformamide, which affords a highest ever turnover number of 160 000 and an initial turnover frequency of 29 000 h-1 in a batch process. The catalyst is successfully applied in a trickle-bed reactor and utilized in an industrially feasible continuous-flow process with an excellent durability and productivity of 915 mmol h-1 gRu -1 .

6.
Sci Rep ; 7: 44796, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317940

RESUMO

Silver nanobelts (AgNBs) have attracted a great interest due to their excellent electrical conductivity and mechanical strength, leading a facile synthesis of these AgNBs in great demand. In here, we are reporting a simple, aqueous phase, size tunable synthesis of smooth surfaced 1D-silver nanobelts using a Polyaniline (PANi) derived polymer at room temperature. The specifically designed PANi polymer, comprising a pendant carboxyl group in the chain, acted as both a reducing agent and template. The resulting Ag nanobelts have more than 10 µm of length, mean width values ranging from 41.1 (11.5) nm to 118.5 (8.8) nm and a mean thickness value of 36.7 (12.5) nm. The UV-Visible spectrum of the AgNBs has shown two Surface Plasmon Resonance peaks at 352 nm and 383 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA