Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(9): 2152-2171.e13, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582369

RESUMO

Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microglia , Humanos , Camundongos , Animais , Redes Reguladoras de Genes , Encéfalo , Regulação da Expressão Gênica
2.
Genes Dev ; 37(13-14): 640-660, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553262

RESUMO

Polycomb group (PcG) proteins maintain the repressed state of lineage-inappropriate genes and are therefore essential for embryonic development and adult tissue homeostasis. One critical function of PcG complexes is modulating chromatin structure. Canonical Polycomb repressive complex 1 (cPRC1), particularly its component CBX2, can compact chromatin and phase-separate in vitro. These activities are hypothesized to be critical for forming a repressed physical environment in cells. While much has been learned by studying these PcG activities in cell culture models, it is largely unexplored how cPRC1 regulates adult stem cells and their subsequent differentiation in living animals. Here, we show in vivo evidence of a critical nonenzymatic repressive function of cPRC1 component CBX2 in the male germline. CBX2 is up-regulated as spermatogonial stem cells differentiate and is required to repress genes that were active in stem cells. CBX2 forms condensates (similar to previously described Polycomb bodies) that colocalize with target genes bound by CBX2 in differentiating spermatogonia. Single-cell analyses of mosaic Cbx2 mutant testes show that CBX2 is specifically required to produce differentiating A1 spermatogonia. Furthermore, the region of CBX2 responsible for compaction and phase separation is needed for the long-term maintenance of male germ cells in the animal. These results emphasize that the regulation of chromatin structure by CBX2 at a specific stage of spermatogenesis is critical, which distinguishes this from a mechanism that is reliant on histone modification.


Assuntos
Núcleo Celular , Cromatina , Animais , Masculino , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Espermatogênese/genética
3.
Cell ; 159(4): 800-13, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417157

RESUMO

We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.


Assuntos
Evolução Biológica , Cromossomos de Mamíferos , Camundongos Endogâmicos C57BL/genética , Análise de Sequência de DNA , Cromossomo Y , Animais , Centrômero , Cromossomos Artificiais Bacterianos/genética , Feminino , Humanos , Masculino , Filogenia , Primatas/genética , Cromossomo X
4.
Cell ; 157(4): 869-81, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813610

RESUMO

Fragile X syndrome, a common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein FMRP. FMRP is present predominantly in the cytoplasm, where it regulates translation of proteins that are important for synaptic function. We identify FMRP as a chromatin-binding protein that functions in the DNA damage response (DDR). Specifically, we show that FMRP binds chromatin through its tandem Tudor (Agenet) domain in vitro and associates with chromatin in vivo. We also demonstrate that FMRP participates in the DDR in a chromatin-binding-dependent manner. The DDR machinery is known to play important roles in developmental processes such as gametogenesis. We show that FMRP occupies meiotic chromosomes and regulates the dynamics of the DDR machinery during mouse spermatogenesis. These findings suggest that nuclear FMRP regulates genomic stability at the chromatin interface and may impact gametogenesis and some developmental aspects of fragile X syndrome.


Assuntos
Espermatogênese , Animais , Cromatina/metabolismo , Pareamento Cromossômico , Dano ao DNA , Embrião de Mamíferos/citologia , Fibroblastos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/citologia , Histonas/metabolismo , Humanos , Masculino , Meiose , Camundongos , Camundongos Knockout , Mutação , Neurônios/metabolismo , Prófase , Receptores de AMPA/metabolismo
5.
Development ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884383

RESUMO

The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we used the enhanced resolution of scRNA-seq, and bulk RNA-seq of developmentally synchronized spermatogenesis, to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate transcriptional regulator STRA8-MEIOSIN, required for the meiotic G1/S phase transition and meiotic gene expression. We conclude that in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.

6.
Genome Res ; 31(2): 198-210, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33479023

RESUMO

Different ancestral autosomes independently evolved into sex chromosomes in snakes, birds, and mammals. In snakes and birds, females are ZW and males are ZZ; in mammals, females are XX and males are XY. Although X and Z Chromosomes retain nearly all ancestral genes, sex-specific W and Y Chromosomes suffered extensive genetic decay. In both birds and mammals, the genes that survived on sex-specific chromosomes are enriched for broadly expressed, dosage-sensitive regulators of gene expression, subject to strong purifying selection. To gain deeper insight into the processes that govern survival on sex-specific chromosomes, we carried out a meta-analysis of survival across 41 species-three snakes, 24 birds, and 14 mammals-doubling the number of ancestral genes under investigation and increasing our power to detect enrichments among survivors relative to nonsurvivors. Of 2564 ancestral genes, representing an eighth of the ancestral amniote genome, only 324 survive on present-day sex-specific chromosomes. Survivors are enriched for dosage-sensitive developmental processes, particularly development of neural crest-derived structures, such as the face. However, there was no enrichment for expression in sex-specific tissues, involvement in sex determination or gonadogenesis pathways, or conserved sex-biased expression. Broad expression and dosage sensitivity contributed independently to gene survival, suggesting that pleiotropy imposes additional constraints on the evolution of dosage compensation. We propose that maintaining the viability of the heterogametic sex drove gene survival on amniote sex-specific chromosomes, and that subtle modulation of the expression of survivor genes and their autosomal orthologs has disproportionately large effects on development and disease.

7.
Genome Res ; 31(8): 1337-1352, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290043

RESUMO

Mammalian sex chromosomes carry large palindromes that harbor protein-coding gene families with testis-biased expression. However, there are few known examples of sex-chromosome palindromes conserved between species. We identified 26 palindromes on the human X Chromosome, constituting more than 2% of its sequence, and characterized orthologous palindromes in the chimpanzee and the rhesus macaque using a clone-based sequencing approach that incorporates full-length nanopore reads. Many of these palindromes are missing or misassembled in the current reference assemblies of these species' genomes. We find that 12 human X palindromes have been conserved for at least 25 million years, with orthologs in both chimpanzee and rhesus macaque. Insertions and deletions between species are significantly depleted within the X palindromes' protein-coding genes compared to their noncoding sequence, demonstrating that natural selection has preserved these gene families. The spacers that separate the left and right arms of palindromes are a site of localized structural instability, with seven of 12 conserved palindromes showing no spacer orthology between human and rhesus macaque. Analysis of the 1000 Genomes Project data set revealed that human X-palindrome spacers are enriched for deletions relative to arms and flanking sequence, including a common spacer deletion that affects 13% of human X Chromosomes. This work reveals an abundance of conserved palindromes on primate X Chromosomes and suggests that protein-coding gene families in palindromes (most of which remain poorly characterized) promote X-palindrome survival in the face of ongoing structural instability.


Assuntos
Seleção Genética , Cromossomo X , Animais , Macaca mulatta/genética , Masculino , Pan troglodytes/genética , Cromossomos Sexuais , Cromossomo X/genética
8.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913479

RESUMO

In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.


Assuntos
Diferenciação Celular , Movimento Celular , Gametogênese , Células Germinativas/metabolismo , Modelos Biológicos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Animais , Células Germinativas/patologia , Humanos , Neoplasias Embrionárias de Células Germinativas/patologia
9.
Cell ; 138(5): 855-69, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737515

RESUMO

Massive palindromes in the human Y chromosome harbor mirror-image gene pairs essential for spermatogenesis. During evolution, these gene pairs have been maintained by intrapalindrome, arm-to-arm recombination. The mechanism of intrapalindrome recombination and risk of harmful effects are unknown. We report 51 patients with isodicentric Y (idicY) chromosomes formed by homologous crossing over between opposing arms of palindromes on sister chromatids. These ectopic recombination events occur at nearly all Y-linked palindromes. Based on our findings, we propose that intrapalindrome sequence identity is maintained via noncrossover pathways of homologous recombination. DNA double-strand breaks that initiate these pathways can be alternatively resolved by crossing over between sister chromatids to form idicY chromosomes, with clinical consequences ranging from spermatogenic failure to sex reversal and Turner syndrome. Our observations imply that crossover and noncrossover pathways are active in nearly all Y-linked palindromes, exposing an Achilles' heel in the mechanism that preserves palindrome-borne genes.


Assuntos
Cromossomos Humanos Y , Sequências Repetidas Invertidas , Recombinação Genética , Instabilidade Cromossômica , Troca Genética , Feminino , Humanos , Masculino , Homologia de Sequência do Ácido Nucleico , Transtornos dos Cromossomos Sexuais/genética , Espermatogênese , Síndrome de Turner/genética
10.
Genome Res ; 30(6): 860-873, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32461223

RESUMO

Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.


Assuntos
Cromossomos Humanos Y , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo Y , Transcriptoma , Cromossomos Humanos X/genética , Biologia Computacional/métodos , Evolução Molecular , Feminino , Perfilação da Expressão Gênica/métodos , Genes Ligados ao Cromossomo X , Humanos , Masculino , MicroRNAs/genética , Especificidade de Órgãos/genética
11.
Genome Res ; 30(12): 1716-1726, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208454

RESUMO

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Assuntos
Análise de Sequência de DNA/veterinária , Cromossomo X/genética , Cromossomo Y/genética , Animais , Bovinos , Linhagem da Célula , Troca Genética , Evolução Molecular , Feminino , Amplificação de Genes , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Testículo/química
12.
Annu Rev Genet ; 49: 507-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442847

RESUMO

Mammals have the oldest sex chromosome system known: the mammalian X and Y chromosomes evolved from ordinary autosomes beginning at least 180 million years ago. Despite their shared ancestry, mammalian Y chromosomes display enormous variation among species in size, gene content, and structural complexity. Several unique features of the Y chromosome--its lack of a homologous partner for crossing over, its functional specialization for spermatogenesis, and its high degree of sequence amplification--contribute to this extreme variation. However, amid this evolutionary turmoil many commonalities have been revealed that have contributed to our understanding of the selective pressures driving the evolution and biology of the Y chromosome. Two biological themes have defined Y-chromosome research over the past six decades: testis determination and spermatogenesis. A third biological theme begins to emerge from recent insights into the Y chromosome's roles beyond the reproductive tract--a theme that promises to broaden the reach of Y-chromosome research by shedding light on fundamental sex differences in human health and disease.


Assuntos
Evolução Biológica , Mamíferos/genética , Testículo/fisiologia , Cromossomo Y/fisiologia , Animais , Cromossomos Humanos Y , Doenças Genéticas Ligadas ao Cromossomo Y , Transtornos da Audição/genética , Humanos , Masculino , Camundongos , Espermatogênese/fisiologia , Síndrome de Turner/genética
13.
PLoS Genet ; 16(1): e1008515, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914128

RESUMO

Germ cells undergo many developmental transitions before ultimately becoming either eggs or sperm, and during embryonic development these transitions include epigenetic reprogramming, quiescence, and meiosis. To begin understanding the transcriptional regulation underlying these complex processes, we examined the spatial and temporal expression of TAF4b, a variant TFIID subunit required for fertility, during embryonic germ cell development. By analyzing published datasets and using our own experimental system to validate these expression studies, we determined that both Taf4b mRNA and protein are highly germ cell-enriched and that Taf4b mRNA levels dramatically increase from embryonic day 12.5-18.5. Surprisingly, additional mRNAs encoding other TFIID subunits are coordinately upregulated through this time course, including Taf7l and Taf9b. The expression of several of these germ cell-enriched TFIID genes is dependent upon Dazl and/or Stra8, known regulators of germ cell development and meiosis. Together, these data suggest that germ cells employ a highly specialized and dynamic form of TFIID to drive the transcriptional programs that underlie mammalian germ cell development.


Assuntos
Gametogênese , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína 1 Suprimida em Azoospermia/genética , Proteína 1 Suprimida em Azoospermia/metabolismo , Células Germinativas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo
14.
BMC Biol ; 20(1): 133, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676717

RESUMO

BACKGROUND: The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY's presence in widely divergent species-bull and mouse-led us to further investigate its evolutionary history. RESULTS: We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY's expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls. CONCLUSIONS: PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm.


Assuntos
Eutérios , Cromossomo Y , Animais , Bovinos , Eutérios/genética , Feminino , Masculino , Mamíferos/genética , Camundongos , Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética
15.
Biol Reprod ; 107(1): 157-167, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35554494

RESUMO

Although hundreds of knockout mice show infertility as a major phenotype, the causative genic mutations of male infertility in humans remain rather limited. Here, we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to G is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes. These results support TAF7L mutation as a risk factor for oligozoospermia in humans.


Assuntos
Infertilidade Masculina , Oligospermia , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Ácido Aspártico , Genes Ligados ao Cromossomo X/genética , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Mutação , Mutação de Sentido Incorreto , Oligospermia/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
16.
Proc Natl Acad Sci U S A ; 116(51): 25677-25687, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31754036

RESUMO

Mammalian primordial germ cells (PGCs) are induced in the embryonic epiblast, before migrating to the nascent gonads. In fish, frogs, and birds, the germline segregates even earlier, through the action of maternally inherited germ plasm. Across vertebrates, migrating PGCs retain a broad developmental potential, regardless of whether they were induced or maternally segregated. In mammals, this potential is indicated by expression of pluripotency factors, and the ability to generate teratomas and pluripotent cell lines. How the germline loses this developmental potential remains unknown. Our genome-wide analyses of embryonic human and mouse germlines reveal a conserved transcriptional program, initiated in PGCs after gonadal colonization, that differentiates germ cells from their germline precursors and from somatic lineages. Through genetic studies in mice and pigs, we demonstrate that one such gonad-induced factor, the RNA-binding protein DAZL, is necessary in vivo to restrict the developmental potential of the germline; DAZL's absence prolongs expression of a Nanog pluripotency reporter, facilitates derivation of pluripotent cell lines, and causes spontaneous gonadal teratomas. Based on these observations in humans, mice, and pigs, we propose that germ cells are determined after gonadal colonization in mammals. We suggest that germ cell determination was induced late in embryogenesis-after organogenesis has begun-in the common ancestor of all vertebrates, as in modern mammals, where this transition is induced by somatic cells of the gonad. We suggest that failure of this process of germ cell determination likely accounts for the origin of human testis cancer.


Assuntos
Diferenciação Celular/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas , Gônadas , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Feminino , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Gônadas/citologia , Gônadas/fisiologia , Masculino , Camundongos , Neoplasias Ovarianas/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Suínos , Teratoma/genética , Neoplasias Testiculares/genética
17.
Am J Hum Genet ; 103(2): 261-275, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075113

RESUMO

Amplicons-large, highly identical segmental duplications-are a prominent feature of mammalian Y chromosomes. Although they encode genes essential for fertility, these amplicons differ vastly between species, and little is known about the selective constraints acting on them. Here, we develop computational tools to detect amplicon copy number with unprecedented accuracy from high-throughput sequencing data. We find that one-sixth (16.9%) of 1,216 males from the 1000 Genomes Project have at least one deleted or duplicated amplicon. However, each amplicon's reference copy number is scrupulously maintained among divergent branches of the Y chromosome phylogeny, including the ancient branch A00, indicating that the reference copy number is ancestral to all modern human Y chromosomes. Using phylogenetic analyses and simulations, we demonstrate that this pattern of variation is incompatible with neutral evolution and instead displays hallmarks of mutation-selection balance. We also observe cases of amplicon rescue, in which deleted amplicons are restored through subsequent duplications. These results indicate that, contrary to the lack of constraint suggested by the differences between species, natural selection has suppressed amplicon copy number variation in diverse human lineages.


Assuntos
Cromossomos Humanos Y/genética , Variações do Número de Cópias de DNA/genética , Seleção Genética/genética , Animais , Linhagem Celular , Evolução Molecular , Dosagem de Genes/genética , Duplicação Gênica/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Filogenia
18.
Genome Res ; 28(4): 474-483, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449410

RESUMO

Mammalian X and Y Chromosomes evolved from an ordinary autosomal pair. Genetic decay of the Y led to X Chromosome inactivation (XCI) in females, but some Y-linked genes were retained during the course of sex chromosome evolution, and many X-linked genes did not become subject to XCI. We reconstructed gene-by-gene dosage sensitivities on the ancestral autosomes through phylogenetic analysis of microRNA (miRNA) target sites and compared these preexisting characteristics to the current status of Y-linked and X-linked genes in mammals. Preexisting heterogeneities in dosage sensitivity, manifesting as differences in the extent of miRNA-mediated repression, predicted either the retention of a Y homolog or the acquisition of XCI following Y gene decay. Analogous heterogeneities among avian Z-linked genes predicted either the retention of a W homolog or gene-specific dosage compensation following W gene decay. Genome-wide analyses of human copy number variation indicate that these heterogeneities consisted of sensitivity to both increases and decreases in dosage. We propose a model of XY/ZW evolution incorporating such preexisting dosage sensitivities in determining the evolutionary fates of individual genes. Our findings thus provide a more complete view of the role of dosage sensitivity in shaping the mammalian and avian sex chromosomes and reveal an important role for post-transcriptional regulatory sequences (miRNA target sites) in sex chromosome evolution.


Assuntos
Evolução Molecular , Dosagem de Genes/genética , MicroRNAs/genética , Inativação do Cromossomo X/genética , Animais , Galinhas/genética , Sequência Conservada/genética , Variações do Número de Cópias de DNA , Feminino , Regulação da Expressão Gênica , Genoma , Humanos , Masculino , Mamíferos , Filogenia , Cromossomo Y/genética
19.
Nature ; 508(7497): 494-9, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24759411

RESUMO

The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.


Assuntos
Evolução Molecular , Dosagem de Genes/genética , Mamíferos/genética , Cromossomo Y/genética , Animais , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Doença , Feminino , Regulação da Expressão Gênica , Saúde , Humanos , Masculino , Marsupiais/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Biossíntese de Proteínas/genética , Estabilidade Proteica , Seleção Genética/genética , Homologia de Sequência , Caracteres Sexuais , Espermatogênese/genética , Testículo/metabolismo , Transcrição Gênica/genética , Síndrome de Turner/genética , Cromossomo X/genética
20.
Proc Natl Acad Sci U S A ; 114(47): E10132-E10141, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109271

RESUMO

Mammalian spermatogenesis is an elaborately organized differentiation process, starting with diploid spermatogonia, which include germ-line stem cells, and ending with haploid spermatozoa. The process involves four pivotal transitions occurring in physical proximity: spermatogonial differentiation, meiotic initiation, initiation of spermatid elongation, and release of spermatozoa. We report how the four transitions are coordinated in mice. Two premeiotic transitions, spermatogonial differentiation and meiotic initiation, were known to be coregulated by an extrinsic signal, retinoic acid (RA). Our chemical manipulations of RA levels in mouse testes now reveal that RA also regulates the two postmeiotic transitions: initiation of spermatid elongation and spermatozoa release. We measured RA concentrations and found that they changed periodically, as also reflected in the expression patterns of an RA-responsive gene, STRA8; RA levels were low before the four transitions, increased when the transitions occurred, and remained elevated thereafter. We found that pachytene spermatocytes, which express an RA-synthesizing enzyme, Aldh1a2, contribute directly and significantly to RA production in testes. Indeed, chemical and genetic depletion of pachytene spermatocytes revealed that RA from pachytene spermatocytes was required for the two postmeiotic transitions, but not for the two premeiotic transitions. We conclude that the premeiotic transitions are coordinated by RA from Sertoli (somatic) cells. Once germ cells enter meiosis, pachytene spermatocytes produce RA to coordinate the two postmeiotic transitions. In combination, these elements underpin the spatiotemporal coordination of spermatogenesis and ensure its prodigious output in adult males.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Aldeído Desidrogenase/genética , Regulação da Expressão Gênica no Desenvolvimento , Espermatogênese/genética , Espermatozoides/metabolismo , Tretinoína/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Diferenciação Celular , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estágio Paquíteno , Retinal Desidrogenase , Transdução de Sinais , Espermátides/citologia , Espermátides/crescimento & desenvolvimento , Espermátides/metabolismo , Espermatócitos/citologia , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Espermatogônias/citologia , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/imunologia , Espermatozoides/citologia , Espermatozoides/crescimento & desenvolvimento , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA