Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 84(17): 3302-3319.e11, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173640

RESUMO

Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC⋅BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Canais de Translocação SEC , Retículo Endoplasmático/metabolismo , Humanos , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células HEK293 , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética
2.
BMC Genomics ; 24(1): 651, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904134

RESUMO

Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Biblioteca Gênica , Genoma , Sistemas CRISPR-Cas
3.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711738

RESUMO

Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.

4.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076791

RESUMO

Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of sec61 (BOS) complex, a component of the 'multipass translocon', was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC•BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, multipass translocon, and Sec61 for biogenesis of diverse membrane proteins in human cells.

5.
Cell Rep ; 30(11): 3691-3698.e5, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187542

RESUMO

A large proportion of membrane proteins must be assembled into oligomeric complexes for function. How this process occurs is poorly understood, but it is clear that complex assembly must be tightly regulated to avoid accumulation of orphan subunits with potential cytotoxic effects. We interrogated assembly in mammalian cells by using the WRB/CAML complex, an essential insertase for tail-anchored proteins in the endoplasmic reticulum (ER), as a model system. Our data suggest that the stability of each subunit is differentially regulated. In WRB's absence, CAML folds incorrectly, causing aberrant exposure of a hydrophobic transmembrane domain to the ER lumen. When present, WRB can correct the topology of CAML both in vitro and in cells. In contrast, WRB can independently fold correctly but is still degraded in the absence of CAML. We therefore propose that there are at least two distinct regulatory pathways for the surveillance of orphan subunits in the mammalian ER.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Animais , Cães , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Estabilidade Proteica , Proteólise , Coelhos , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA