RESUMO
Native lipid bilayer mimetics, including those that use amphiphilic polymers, are important for the effective study of membrane-bound peptides and proteins. Copolymers of vinyl ether monomers and maleic anhydride were developed with controlled molecular weights and hydrophobicity through reversible addition-fragmentation chain-transfer polymerization. After polymerization, the maleic anhydride units can be hydrolyzed, giving dicarboxylates. The vinyl ether and maleic anhydride copolymerized in a close to alternating manner, giving essentially alternating hydrophilic maleic acid units and hydrophobic vinyl ether units along the backbone after hydrolysis. The vinyl ether monomers and maleic acid polymers self-assembled with lipids, giving vinyl ether maleic acid lipid particles (VEMALPs) with tunable sizes controlled by either the vinyl ether hydrophobicity or the polymer molecular weight. These VEMALPs were able to support membrane-bound proteins and peptides, creating a new class of lipid bilayer mimetics.
Assuntos
Bicamadas Lipídicas , Maleatos , Proteínas de Membrana , Polímeros , Maleatos/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Polímeros/química , Compostos de Vinila/química , Interações Hidrofóbicas e Hidrofílicas , PolimerizaçãoRESUMO
The worldwide spread of the metallo-ß-lactamases (MBL), especially New Delhi metallo-ß-lactamase-1 (NDM-1), is threatening the efficacy of ß-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data. The prediction tool was then used for virtual screening of the NIH Genesis library, which was subsequently screened using qHTS. A novel MBL inhibitor was identified and shown to lower minimum inhibitory concentrations (MICs) of Meropenem for a panel of E. coli and K. pneumoniae clinical isolates expressing NDM-1. The mechanism of inhibition of this novel scaffold was probed utilizing equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry, UV-vis spectrophotometry, and molecular docking. The uncovered inhibitor, compound 72922413, was shown to be 9-hydroxy-3-[(5-hydroxy-1-oxa-9-azaspiro[5.5]undec-9-yl)carbonyl]-4H-pyrido[1,2-a]pyrimidin-4-one.
Assuntos
Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores de beta-Lactamases , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Ensaios de Triagem em Larga EscalaRESUMO
ß-Lactam antibiotics are among the most frequently prescribed therapeutic agents. A common mechanism of resistance toward ß-lactam antibiotics is the production of ß-lactamases. These enzymes are capable of hydrolyzing the ß-lactam bond, rendering the drug inactive. Among the four described classes, the metallo- ß-lactamases (MBLs, class B) employ one or two zinc ions in the active site for catalysis. One of the three most clinically relevant MBLs is New Delhi Metallo- ß-Lactamase (NDM-1). The current study sought to investigate the in vitro protein evolution of NDM-1 ß-lactamase using error-prone polymerase chain reaction. Evaluation revealed that variants were not found to confer higher levels of resistance toward meropenem based on amino acid substitutions. Thus, we postulate that increases in transcription or changes in zinc transport may be clinically more relevant to meropenem resistance than amino acid substitutions.
Assuntos
beta-Lactamases , beta-Lactamas , Meropeném , beta-Lactamases/metabolismo , beta-Lactamas/química , Zinco , Domínio Catalítico , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/químicaRESUMO
Interleukin 17 (IL-17) is critical in the pathogenesis of inflammatory and autoimmune diseases. Here we report that Act1, the key adaptor for the IL-17 receptor (IL-7R), formed a complex with the inducible kinase IKKi after stimulation with IL-17. Through the use of IKKi-deficient mice, we found that IKKi was required for IL-17-induced expression of genes encoding inflammatory molecules in primary airway epithelial cells, neutrophilia and pulmonary inflammation. IKKi deficiency abolished IL-17-induced formation of the complex of Act1 and the adaptors TRAF2 and TRAF5, activation of mitogen-activated protein kinases (MAPKs) and mRNA stability, whereas the Act1-TRAF6-transcription factor NF-κB axis was retained. IKKi was required for IL-17-induced phosphorylation of Act1 on Ser311, adjacent to a putative TRAF-binding motif. Substitution of the serine at position 311 with alanine impaired the IL-17-mediated Act1-TRAF2-TRAF5 interaction and gene expression. Thus, IKKi is a kinase newly identified as modulating IL-17 signaling through its effect on Act1 phosphorylation and consequent function.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Quimiocina CXCL1/imunologia , Quinase I-kappa B , Neutrófilos/imunologia , Pneumonia/imunologia , Transdução de Sinais/imunologia , Células Th17/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Pulmão , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neutrófilos/metabolismo , Fosforilação , Pneumonia/genética , Pneumonia/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro , Receptores de Interleucina-17/imunologia , Fator 5 Associado a Receptor de TNF/imunologia , Fator 5 Associado a Receptor de TNF/metabolismo , Células Th17/metabolismoRESUMO
Ubiquitination is a crucial cellular pathway enabling normal cellular functions. Abnormalities in the ubiquitination process can lead to cellular dysfunction and cause a range of diseases. Efforts to screen and develop small molecule inhibitors targeting portions of the ubiquitination cascade require rapid and robust methods for detecting ubiquitination. Enormous efforts have been made in the field to detect ubiquitination using various techniques including fluorescence, spectrophotometry, chemiluminescence, NMR, and radioactive tracers. The most common method to detect ubiquitination is western blotting. However, western blotting is time-consuming and difficult to use when seeking fine-grained time course experiments. Here we present the use of bio-layer interferometry to rapidly assay ubiquitination in real-time. An E3 ligase auto-ubiquitination system and a substrate ubiquitination assay have been applied as tests for the newly developed assay. The developed BLI ubiquitination assay provides one-second time resolution and detects the formation of polyubiquitin chains directly on a biosensor-bound target. Results are returned instantaneously, and reagent concentrations are identical to those used by traditional western blot-based ubiquitination assays. The developed BLI ubiquitination assay is a viable alternative to traditional western blot assays to detect ubiquitination in a rapid real-time manner.
Assuntos
Interferometria , Ubiquitina-Proteína Ligases , Ubiquitinação , Western Blotting , EspectrofotometriaRESUMO
The global spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has caused the loss of many human lives and severe economic losses. SARS-CoV-2 mediates its infection in humans via the spike glycoprotein. The receptor binding domain of the SARS-CoV-2 spike protein binds to its cognate receptor, angiotensin converting enzyme-2 (ACE2) to initiate viral entry. In this study, we examine how polymer modification of the spike protein receptor binding domain impacts binding to ACE2. The horseradish peroxidase conjugated receptor binding domain was modified with a range of polymers including hydrophilic N,N-dimethylacrylamide, hydrophobic N-isopropylacrylamide, cationic 3-(N,N-dimethylamino)propylacrylamide, and anionic 2-acrylamido-2-methylpropane sulfonic acid polymers. The effect of polymer chain length was observed using N,N-dimethylacrylamide polymers with degrees of polymerization of 5, 10 and 25. Polymer conjugation of the receptor binding domain significantly reduced the interaction with ACE2 protein, as determined by an enzyme-linked immunosorbent assay. Stability analysis showed that these conjugates remained highly stable even after seven days incubation at physiological temperature. Hence, this study provides a detailed view of the effect specific type of modification using a library of polymers with different functionalities in interrupting RBD-ACE2 interaction.
RESUMO
ß-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent ß-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC ß-lactamases (KPC-2/3 melting temperature [Tm] of 54 to 55°C versus D179Y Tm of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear 1H/15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.
Assuntos
Ceftazidima , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ceftazidima/farmacologia , Combinação de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Imipenem/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Espectroscopia de Ressonância Magnética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/metabolismoRESUMO
Tobacco etch virus (TEV) protease is a widely used protease for fusion tag cleavage. Despite its widespread usage, an assay to quickly and easily quantify its activity in laboratory settings is still lacking. Thus, researchers may encounter inefficient cleavage of the desired fusion proteins due to poor activity of a given TEV protease preparation. Here, we describe the development and implementation of a fluorescence dequenching-based assay to quantify TEV protease activity and assess kinetic parameters. The peptide substrate used in this assay consists of a C-terminal TAMRA fluorophore, an N-terminal fluorescein fluorophore, and the canonical TEV protease recognition sequence. The assay is based on a reduction of fluorescence quenching of fluorescein upon cleavage by TEV protease. The substrate peptide was studied spectroscopically to assess feasibility and to propose a plausible mechanism of the assay. The assay was optimized and applied to obtain rapid assessments of TEV protease activity in purified samples and crude lysate extracts. The kinetic data obtained from improved TEV protease variants were compared with a traditional SDS-PAGE assay. Finally, the assay was applied to determine the optimum pH for TEV protease. Further, the study found that the assay is a rapid and simple approach to quantify TEV protease activity. The findings of the assay on crude lysate extracts, activity assay of TEV protease variants, and assessment of optimum pH for TEV protease reactions demonstrate the robust utility of the assay.
Assuntos
Endopeptidases , Peptídeo Hidrolases , Endopeptidases/metabolismo , Peptídeos/metabolismo , Fluoresceínas , Proteínas Recombinantes de FusãoRESUMO
The thermophilic cellulase Cel5a from Fervidobacterium nodosum (FnCel5a) was conjugated with neutral, cationic, and anionic polymers of increasing molecular weights. The enzymatic activity toward an anionic soluble cellulose derivative, thermal stability, and functional chemical stability of these bioconjugates were investigated. The results suggest that increasing polymer chain length for polymers compatible with the substrate enhances the positive impact of polymer conjugation on enzymatic activity. Activity enhancements of nearly 100% were observed for bioconjugates with N,N-dimethyl acrylamide (DMAm) and N,N-dimethyl acrylamide-2-(N,N-dimethylamino)ethyl methacrylate (DMAm/DMAEMA) due to proposed polymer-substrate compatibility enabled by potential noncovalent interactions. Double conjugation of two functionally distinct polymers to wild-type and mutated FnCel5a using two conjugation methods was achieved. These doubly conjugated bioconjugates exhibited similar thermal stability to the unmodified wild-type enzyme, although enzymatic activity initially gained from conjugation was lost, suggesting that chain length may be a better tool for bioconjugate activity modulation than double conjugation.
Assuntos
Celulase , Polímeros , Acrilamidas , Celulase/química , Celulase/genética , Celulose , Metacrilatos/química , Peso Molecular , Polímeros/químicaRESUMO
Metallo-ß-lactamases (MBLs) are a growing clinical threat because they inactivate nearly all ß-lactam-containing antibiotics, and there are no clinically available inhibitors. A significant number of variants have already emerged for each MBL subfamily. To understand the evolution of imipenemase (IMP) genes (blaIMP) and their clinical impact, 20 clinically derived IMP-1 like variants were obtained using site-directed mutagenesis and expressed in a uniform genetic background in Escherichia coli strain DH10B. Strains of IMP-1-like variants harboring S262G or V67F substitutions exhibited increased resistance toward carbapenems and decreased resistance toward ampicillin. Strains expressing IMP-78 (S262G/V67F) exhibited the largest changes in MIC values compared to IMP-1. In order to understand the molecular mechanisms of increased resistance, biochemical, biophysical, and molecular modeling studies were conducted to compare IMP-1, IMP-6 (S262G), IMP-10 (V67F), and IMP-78 (S262G/V67F). Finally, unlike most New Delhi metallo-ß-lactamase (NDM) and Verona integron-encoded metallo-ß-lactamase (VIM) variants, the IMP-1-like variants do not confer any additional survival advantage if zinc availability is limited. Therefore, the evolution of MBL subfamilies (i.e., IMP-6, -10, and -78) appears to be driven by different selective pressures.
Assuntos
Carbapenêmicos , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
Site-specific conjugation to cysteines of proteins often uses ester groups to link maleimide or alkene groups to polymers. However, the ester group is susceptible to hydrolysis, potentially losing the benefits gained through bioconjugation. Here, we present a simple conjugation strategy that utilizes the amide bond stability of traditional 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling while introducing site specificity. Hydrolytically stable maleimide-end-functionalized polymers for site-specific conjugation to free cysteines of proteins were synthesized using reversible addition-fragmentation chain-transfer (RAFT) polymerization. The alpha terminus of the polymers was amidated with a furan-protected aminoethyl maleimide using carbodiimide-based chemistry. Finally, the maleimide was exposed by a retro Diels-Alder reaction to yield the maleimide group, allowing for thiol-maleimide click chemistry for bioconjugation. A thermophilic cellulase from Fervidobacterium nodosum (FnCel5a) was conjugated using various strategies, including random 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling, site-specific hydroxyethyl maleimide (HEMI) end-functionalized coupling, hydroxyethyl acrylate (HEA) end-functionalized coupling, and amidoethyl maleimide (AEMI) end-functionalized coupling. Only the polymers conjugated by EDC and AEMI remained conjugated a week after attachment. This indicates that hydrolytically stable amide-based maleimides are an important bioconjugation strategy for conjugates that require long-term stability, while esters are better suited for systems that require debonding of polymers over time.
Assuntos
PolímerosRESUMO
An industrially important enzyme, Candida antarctica lipase B (CalB), was modified with a range of functional polymers including hydrophilic, hydrophobic, anionic, and cationic character using a "grafting to" approach. We determined the impact of polymer chain length on CalB activity by synthesizing biohybrids of CalB with each polymer at three different chain lengths, using reversible addition-fragmentation chain transfer (RAFT) polymerization. The activity of CalB in both aqueous and aqueous-organic media mixtures was significantly enhanced for acrylamide (Am) and N,N-dimethyl acrylamide (DMAm) conjugates, with activity remaining approximately constant in 25 and 50% ethanol solvent systems. Interestingly, the activity of N,N-dimethylaminopropyl-acrylamide (DMAPA) conjugates increased gradually with increasing organic solvent content in the system. Contrary to other literature reports, our study showed significantly diminished activity for hydrophobic polymer-protein conjugates. Functional thermal stability assays also displayed a considerable enhancement of retained activity of Am, DMAm, and DMAPA conjugates compared to the native CalB enzyme. Thus, this study provides an insight into possible advances in lipase production, which can lead to new improved lipase bioconjugates with increased activity and stability.
Assuntos
Enzimas Imobilizadas , Polímeros , Basidiomycota , Candida , Proteínas Fúngicas , LipaseRESUMO
In an effort to probe the biophysical mechanisms of inhibition for ten previously-reported inhibitors of metallo-ß-lactamases (MBL) with MBL IMP-1, equilibrium dialysis, metal analyses coupled with atomic absorption spectroscopy (AAS), native state mass spectrometry (native MS), and ultraviolet-visible spectrophotometry (UV-VIS) were used. 6-(1H-tetrazol-5-yl) picolinic acid (1T5PA), ANT431, D/l-captopril, thiorphan, and tiopronin were shown to form IMP-1/Zn(II)/inhibitor ternary complexes, while dipicolinic acid (DPA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA) stripped some metal from the active site of IMP but also formed ternary complexes. DPA and 3AP-DPA stripped less metal from IMP-1 than from VIM-2 but stripped more metal from IMP-1 than from NDM-1. In contrast to a previous report, pterostilbene does not appear to bind to IMP-1 under our conditions. These results, along with previous studies, demonstrate similar mechanisms of inhibition toward different MBLs for different MBL inhibitors.
Assuntos
Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos de Sulfidrila/farmacologia , Sulfetos/farmacologia , beta-Lactamases/metabolismo , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Espectrometria de Massas , Estrutura Molecular , Pseudomonas aeruginosa/enzimologia , Serratia marcescens/enzimologia , Espectrofotometria Atômica , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Sulfetos/químicaRESUMO
CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease.
Assuntos
Cognição , Atividade Motora/genética , Domínios Proteicos/genética , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases/genética , Animais , Comportamento Animal , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenótipo , Mutação Puntual , Multimerização Proteica/genética , Ratos , Ratos Sprague-Dawley , Ataxias Espinocerebelares/congênito , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Due to their capacity to conduct complex organic transformations, enzymes find extensive use in medical and industrial settings. Unfortunately, enzymes are limited by their poor stability when exposed to harsh non-native conditions. While a host of methods have been developed to stabilize enzymes in non-native conditions, recent research into the synthesis of polymer-enzyme biohybrids using reversible deactivation radical polymerization approaches has demonstrated the potential of increased enzymatic activity in both native and non-native environments. In this manuscript, we utilize the enzyme lipase, as a model system, to explore the impact that modulation of grafted polymer molecular weight has on enzyme activity in both aqueous and organic media. We studied the properties of these hybrids using both solution-phase enzyme activity methods and coarse-grain modeling to assess the impact of polymer grafting density and grafted polymer molecular weight on enzyme activity to gain a deeper insight into this understudied property of the biohybrid system.
Assuntos
Biocatálise , Lipase/química , Lipase/metabolismo , Multimerização Proteica , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína , Água/químicaRESUMO
Due to the rapid proliferation of antibiotic-resistant pathogenic bacteria, known as carbapenem-resistant enterobacteriaceae, the efficacy of ß-lactam antibiotics is threatened. ß-lactam antibiotics constitute over 50% of the available antibiotic arsenal. Recent efforts have been focused on developing inhibitors to these enzymes. In an effort to understand the mechanism of inhibition(s) of four FDA-approved thiol-containing drugs that were previously reported to be inhibitors of New Delhi metallo-ß-lactamase (NDM-1), various biochemical and spectroscopic techniques were used. Isothermal titration calorimetry demonstrated the binding affinity to NDM-1 corresponds to the reported IC50 values of the inhibitors. Equilibrium dialyses and metal analyses demonstrated that all of these inhibitors formed ternary complexes with ZnZn-NDM-1. Spectroscopic studies on CoCo-NDM-1 revealed two distinct binding modes for the thiol-containing compounds. These findings validate the need to further investigate the mechanism of inhibition of MBL inhibitors. Further research to identify inhibition capabilities beyond reported IC50 values is necessary for understanding the binding modes of these identified compounds and to provide the necessary foundation for developing clinically relevant MBL inhibitors.
Assuntos
Compostos de Sulfidrila/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Sulfidrila/química , Inibidores de beta-Lactamases/química , beta-Lactamases/genéticaRESUMO
Styrene-maleic acid copolymers have received significant attention because of their ability to interact with lipid bilayers and form styrene-maleic acid copolymer lipid nanoparticles (SMALPs). However, these SMALPs are limited in their chemical diversity, with only phenyl and carboxylic acid functional groups, resulting in limitations because of sensitivity to low pH and high concentrations of divalent metals. To address this limitation, various nucleophiles were reacted with the anhydride unit of well-defined styrene-maleic anhydride copolymers in order to assess the potential for a new lipid disk nanoparticle-forming species. These styrene-maleic anhydride copolymer derivatives (SMADs) can form styrene-maleic acid derivative lipid nanoparticles (SMADLPs) when they interact with lipid molecules. Polymers were synthesized, purified, characterized by Fourier-transform infrared spectroscopy, gel permeation chromatography, and nuclear magnetic resonance and then used to make disk-like SMADLPs, whose sizes were measured by dynamic light scattering (DLS). The SMADs form lipid nanoparticles, observable by DLS and transmission electron microscopy, and were used to reconstitute a spin-labeled transmembrane protein, KCNE1. The polymer method reported here is facile and scalable and results in functional and robust polymers capable of forming lipid nanodisks that are stable against a wide pH range and 100 mM magnesium.
Assuntos
Anidridos Maleicos , Nanopartículas , Bicamadas Lipídicas , Maleatos , Polímeros , PoliestirenosRESUMO
Infections by carbapenem-resistant Enterobacteriaceae are difficult to manage owing to broad antibiotic resistance profiles and because of the inability of clinically used ß-lactamase inhibitors to counter the activity of metallo-ß-lactamases often harbored by these pathogens. Of particular importance is New Delhi metallo-ß-lactamase (NDM), which requires a di-nuclear zinc ion cluster for catalytic activity. Here, we compare the structures and functions of clinical NDM variants 1-17. The impact of NDM variants on structure is probed by comparing melting temperature and refolding efficiency and also by spectroscopy (UV-visible, 1H NMR, and EPR) of di-cobalt metalloforms. The impact of NDM variants on function is probed by determining the minimum inhibitory concentrations of various antibiotics, pre-steady-state and steady-state kinetics, inhibitor binding, and zinc dependence of resistance and activity. We observed only minor differences among the fully loaded di-zinc enzymes, but most NDM variants had more distinguishable selective advantages in experiments that mimicked zinc scarcity imposed by typical host defenses. Most NDM variants exhibited improved thermostability (up to â¼10 °C increased Tm ) and improved zinc affinity (up to â¼10-fold decreased Kd, Zn2). We also provide first evidence that some NDM variants have evolved the ability to function as mono-zinc enzymes with high catalytic efficiency (NDM-15, ampicillin: kcat/Km = 5 × 106 m-1 s-1). These findings reveal the molecular mechanisms that NDM variants have evolved to overcome the combined selective pressures of ß-lactam antibiotics and zinc deprivation.
Assuntos
Mutação , Zinco/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Antibacterianos/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/genética , beta-Lactamases/isolamento & purificaçãoRESUMO
In an effort to evaluate whether a recently reported putative metallo-ß-lactamase (MßL) contains a novel MßL active site, SPS-1 from Sediminispirochaeta smaragdinae was overexpressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equiv of Zn(II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not ß-lactam substrates with bulky substituents at the 6/7 position. Spectroscopic studies of Co(II)-substituted SPS-1 suggest a novel metal center in SPS-1, with a reduced level of spin coupling between the metal ions and a novel Zn1 metal binding site. This site was confirmed with a crystal structure of the enzyme. The structure shows a Zn2 site that is similar to that in NDM-1 and other subclass B1 MßLs; however, the Zn1 metal ion is coordinated by two histidine residues and a water molecule, which is held in position by a hydrogen bond network. The Zn1 metal is displaced nearly 1 Å from the position reported in other MßLs. The structure also shows extended helices above the active site, which create a binding pocket that precludes the binding of substrates with large, bulky substituents at the 6/7 position of ß-lactam antibiotics. This study reveals a novel metal binding site in MßLs and suggests that the targeting of metal binding sites in MßLs with inhibitors is now more challenging with the identification of this new MßL.
Assuntos
Spirochaeta/enzimologia , Zinco/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Filogenia , Conformação Proteica , Zinco/química , beta-Lactamases/química , beta-Lactamas/químicaRESUMO
This review article highlights recent developments in the field of photochemistry and photochemical reversible deactivation radical polymerization applied to aqueous polymerizations. Photochemistry is a topic of significant interest in the fields of organic, polymer, and materials chemistry because it allows challenging reactions to be performed under mild conditions. Aqueous polymerization is of significant interest because water is an environmentally benign solvent, and the use of water enables complex polymer self-assembly and bioconjugation processes to occur. This review focuses on powerful new developments in photochemical aqueous polymerization reactions and their applications to the synthesis of well-defined polymer nano-objects and bioconjugates. It is anticipated that these aqueous photopolymerizations will enable the next generation of self-assembled structures and biohybrid materials to be developed under mild and environmentally friendly conditions.