Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuromodulation ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36997453

RESUMO

OBJECTIVE: This study explored intraneural stimulation of the right thoracic vagus nerve (VN) in sexually mature male minipigs to modulate safe heart rate and blood pressure response. MATERIAL AND METHODS: We employed an intraneural electrode designed for the VN of pigs to perform VN stimulation (VNS). This was delivered using different numbers of contacts on the electrode and different stimulation parameters (amplitude, frequency, and pulse width), identifying the most suitable stimulation configuration. All the parameter ranges had been selected from a computational cardiovascular system model. RESULTS: Clinically relevant responses were observed when stimulating with low current intensities and relatively low frequencies delivered with a single contact. Selecting a biphasic, charge-balanced square wave for VNS with a current amplitude of 500 µA, frequency of 10 Hz, and pulse width of 200 µs, we obtained heart rate reduction of 7.67 ± 5.19 beats per minute, systolic pressure reduction of 5.75 ± 2.59 mmHg, and diastolic pressure reduction of 3.39 ± 1.44 mmHg. CONCLUSION: Heart rate modulation was obtained without inducing any observable adverse effects, underlining the high selectivity of the intraneural approach.

2.
Bioelectron Med ; 10(1): 6, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38350988

RESUMO

BACKGROUND: Cuff electrodes target various nerves throughout the body, providing neuromodulation therapies for motor, sensory, or autonomic disorders. However, when using standard, thick silicone cuffs, fabricated in discrete circular sizes, complications may arise, namely cuff displacement or nerve compression, due to a poor adaptability to variable nerve shapes and sizes encountered in vivo. Improvements in cuff design, materials, closing mechanism and surgical approach are necessary to overcome these issues. METHODS: In this work, we propose a microfabricated multi-channel silicone-based soft cuff electrode with a novel easy-to-implant and size-adaptable design and evaluate a number of essential features such as nerve-cuff contact, nerve compression, cuff locking stability, long-term integration and stimulation selectivity. We also compared performance to that of standard fixed-size cuffs. RESULTS: The belt-like cuff made of 150 µm thick silicone membranes provides a stable and pressure-free conformal contact, independently of nerve size variability, combined with a straightforward implantation procedure. The adaptable design and use of soft materials lead to limited scarring and demyelination after 6-week implantation. In addition, multi-contact designs, ranging from 6 to 16 electrodes, allow for selective stimulation in models of rat and pig sciatic nerve, achieving targeted activation of up to 5 hindlimb muscles. CONCLUSION: These results suggest a promising alternative to classic fixed-diameter cuffs and may facilitate the adoption of soft, adaptable cuffs in clinical settings.

3.
Nat Biotechnol ; 40(2): 198-208, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34580478

RESUMO

Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.


Assuntos
Optogenética , Tecnologia sem Fio , Animais , Encéfalo/fisiologia , Camundongos , Neurônios/fisiologia , Medula Espinal/fisiologia
4.
J Neural Eng ; 18(3): 031001, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750743

RESUMO

Peripheral nerve interfaces (PNIs) record and/or modulate neural activity of nerves, which are responsible for conducting sensory-motor information to and from the central nervous system, and for regulating the activity of inner organs. PNIs are used both in neuroscience research and in therapeutical applications such as precise closed-loop control of neuroprosthetic limbs, treatment of neuropathic pain and restoration of vital functions (e.g. breathing and bladder management). Implantable interfaces represent an attractive solution to directly access peripheral nerves and provide enhanced selectivity both in recording and in stimulation, compared to their non-invasive counterparts. Nevertheless, the long-term functionality of implantable PNIs is limited by tissue damage, which occurs at the implant-tissue interface, and is thus highly dependent on material properties, biocompatibility and implant design. Current research focuses on the development of mechanically compliant PNIs, which adapt to the anatomy and dynamic movements of nerves in the body thereby limiting foreign body response. In this paper, we review recent progress in the development of flexible and implantable PNIs, highlighting promising solutions related to materials selection and their associated fabrication methods, and integrated functions. We report on the variety of available interface designs (intraneural, extraneural and regenerative) and different modulation techniques (electrical, optical, chemical) emphasizing the main challenges associated with integrating such systems on compliant substrates.


Assuntos
Neurociências , Nervos Periféricos , Próteses e Implantes
5.
Sci Transl Med ; 11(514)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619546

RESUMO

Auditory brainstem implants (ABIs) provide sound awareness to deaf individuals who are not candidates for the cochlear implant. The ABI electrode array rests on the surface of the cochlear nucleus (CN) in the brainstem and delivers multichannel electrical stimulation. The complex anatomy and physiology of the CN, together with poor spatial selectivity of electrical stimulation and inherent stiffness of contemporary multichannel arrays, leads to only modest auditory outcomes among ABI users. Here, we hypothesized that a soft ABI could enhance biomechanical compatibility with the curved CN surface. We developed implantable ABIs that are compatible with surgical handling, conform to the curvature of the CN after placement, and deliver efficient electrical stimulation. The soft ABI array design relies on precise microstructuring of plastic-metal-plastic multilayers to enable mechanical compliance, patterning, and electrical function. We fabricated soft ABIs to the scale of mouse and human CN and validated them in vitro. Experiments in mice demonstrated that these implants reliably evoked auditory neural activity over 1 month in vivo. Evaluation in human cadaveric models confirmed compatibility after insertion using an endoscopic-assisted craniotomy surgery, ease of array positioning, and robustness and reliability of the soft electrodes. This neurotechnology offers an opportunity to treat deafness in patients who are not candidates for the cochlear implant, and the design and manufacturing principles are broadly applicable to implantable soft bioelectronics throughout the central and peripheral nervous system.


Assuntos
Implantes Auditivos de Tronco Encefálico , Animais , Implantes Cocleares , Núcleo Coclear , Surdez/terapia , Estimulação Elétrica , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA