Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(6): e22966, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227156

RESUMO

Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.


Assuntos
MicroRNAs , Proteoma , Animais , Proteoma/metabolismo , Dieta Ocidental , Drosophila/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Encéfalo/metabolismo
2.
J Sex Med ; 19(9): 1333-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35840531

RESUMO

BACKGROUND: Prostatic radiation therapy (RT) leads to erectile dysfunction by damaging peri-prostatic pro-erectile nerves of the pelvic ganglion. Schwann cells (SC) facilitate neuronal repair after mechanical injury, however, their role in repair of pelvic neurons post-radiation hasn't been explored. AIM: To determine if SCs cocultured with primary pelvic neurons can rescue neuronal survival and growth after ex vivo RT. METHODS: Major pelvic ganglia (MPG) were collected from adult male Sprague-Dawley rats (n = 12) to isolate SCs. SCs received RT (0 or 8 Gy), were plated on coated coverslips and grown to confluence before the addition of neurons. Additional MPGs were irradiated (0 or 8 Gy) and digested to isolate pelvic neurons. Dissociated neurons were plated alone or atop SC-coated coverslips to create 6 experimental groups (n = 3/grp): (i) Control (CON) MPG, (ii) RT MPG, (iii) CON SC + CON MPG, (iv) CONSC + RT MPG, (v) RT SC + CON MPG, and (iv) RT SC + RT MPG. After 72 hours, coverslips were fixed and stained for beta-tubulin (neuron marker), S100 (SC marker), neuronal nitric oxide synthase (nitrergic marker), tyrosine hydroxylase (sympathetic marker), and terminal deoxynucleotidyl transferase dUTP nick-end labeling. OUTCOMES: We measured neurite length, branching, specific neuron populations and apoptosis. RESULTS: Ex vivo RT decreased MPG neuron length, increased apoptosis and decreased nitrergic neurons in monoculture. Compared to all other groups, CON SC + RT MPG cocultures demonstrated increased neurite outgrowth (P < .001). Neurite branching was decreased in the RT MPG + RT SC coculture, but unchanged in other cocultures. Groups containing RT MPG neurons exhibited increased apoptosis, but coculture with CON SC reduced the degree of RT-induced apoptosis (P < .01). The number of tyrosine hydroxylase positive neurons was unchanged while nitrergic neurons were significantly lower in RT neurons and coculture with CON SCs was unable to prevent nitrergic loss. CLINICAL TRANSLATION: These findings suggest that SCs may be an important target in prostate cancer patients with radiation-induced pelvic neuropathy to promote MPG neuron survival and neuronal repair after RT. STRENGTHS AND LIMITATIONS: This is the first study to characterize the ex vivo ability of SCs to rescue pelvic nerve growth and survival. The study is limited by little supporting mechanistic molecular data and the need to confirm the ability of healthy SCs to promote pelvic neuron survival and repair following prostatic RT in vivo. CONCLUSION: Unirradiated SCs partially mitigated RT-induced MPG apoptosis but did not affect the loss of nitrergic neuron populations suggesting that SCs promote irradiated MPG neuron survival and facilitate intrinsic repair functions. Randolph JT, Pak ES, McMains JC, et al. Cocultured Schwann Cells Rescue Irradiated Pelvic Neuron Outgrowth and Increase Survival. J Sex Med 2022;19:1333-1342.


Assuntos
Neurônios Nitrérgicos , Tirosina 3-Mono-Oxigenase , Animais , Células Cultivadas , Técnicas de Cocultura , Humanos , Masculino , Crescimento Neuronal , Ratos , Ratos Sprague-Dawley , Células de Schwann
3.
Neurourol Urodyn ; 40(6): 1470-1478, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015163

RESUMO

AIMS: To determine the effect of prostatic radiation therapy (RT) on bladder contractility and morphology, and axon, or neuron profiles within the detrusor and major pelvic ganglia (MPG) in male rats. METHODS: Male Sprague-Dawley rats (8 weeks) received a single dose of prostatic RT (0 or 22 Gy). Bladders and MPG were collected 2- and 10-weeks post-RT. Detrusor contractile responses to carbachol and electrical field stimulation (EFS) were measured. Bladders were stained with Masson's trichrome, and antibodies for nonspecific neuronal marker, cholinergic nerve marker choline acetyltransferase (ChAT), and alpha-smooth muscle actin. MPG gene expression was assessed by quantitative polymerase chain reaction for ubiquitin carboxy-terminal hydrolase L1 (Uchl1) and Chat. RESULTS: At 2 weeks post-RT, bladder smooth muscle, detrusor cholinergic axon profiles, and MPG Chat gene expression were increased (p < .05), while carbachol and EFS-mediated contractions were decreased (p < .05). In contrast, at 10 weeks post-RT, nerve-mediated contractions were increased compared with control (p < .05), while bladder smooth muscle, detrusor cholinergic axon profiles, MPG Chat expression, and carbachol contractions had normalized. At both 2- and 10-weeks post-RT, there was no change in detrusor nonspecific axon profiles and MPG Uchl1 expression. CONCLUSION: In a rat model, RT of the prostate and MPG was associated with early changes in MPG Chat gene expression, and bladder cholinergic axon profiles and smooth muscle content which resolved over time. After RT recovery, bladder contractility decreased early and increased by 10 weeks. Long-term changes to the MPG and increased bladder cholinergic axons may contribute to RT-induced bladder dysfunction in prostate cancer survivors.


Assuntos
Contração Muscular , Bexiga Urinária , Animais , Carbacol/farmacologia , Masculino , Músculo Liso , Ratos , Ratos Sprague-Dawley
4.
J Sex Med ; 17(8): 1423-1433, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32576498

RESUMO

BACKGROUND: Prostatic radiation therapy (RT) often causes erectile dysfunction (ED) and the mechanisms governing RT-induced ED are unclear with a lack of therapeutic strategies. AIM: To determine the effects of ex vivo RT on major pelvic ganglion (MPG) neuron survival, and neurite growth in whole vs dissociated culture. METHODS: MPGs were removed and irradiated (0 or 8 Gy) from male Sprague Dawley rats. For dissociated culture, MPG neurons were digested in collagenase/dispase and cultured on coverslips. Immunofluorescent staining for beta-tubulin III (TUBB3; neuron marker), neuronal nitric oxide synthase (nNOS; nitrergic marker), tyrosine hydroxylase (TH; sympathetic marker), and terminal deoxynucleotidyl transferase dUTP nick end labeling assessed neurite length, branching, autonomic neuron density, and apoptosis. For whole organ culture, MPGs were grown in Matrigel. Gene expression of apoptotic markers (caspase 1, 3), TUBB3, nNOS, TH, and Schwann cells (Sox10, Krox20, glial fibrillary acid protein) was measured in whole organ cultured MPGs by quantitative polymerase chain reaction. OUTCOMES: After 72 hours, neurite length, branching, autonomic neuron density, and apoptosis were assessed, and gene expression was measured. RESULTS: RT increased apoptosis in dissociated neurons measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (P < .001) and whole MPG culture via upregulation of caspase 3 gene expression (P < .05). Nitrergic neurons were markedly decreased in irradiated dissociated culture (P < .05), while nNOS gene expression was upregulated in irradiated whole organ culture (P < .05). The proportion of dissociated sympathetic neurons and whole organ TH gene expression remained unchanged after RT. Interestingly, RT dissociated neurites were 22% shorter than controls, while RT whole organ neurites were 15% longer than controls (P < .01). MPG Schwann cells markers (Sox10, Krox20) were elevated after RT in whole organ culture. CLINICAL TRANSLATION: Prostatic RT leads to increased neuronal cell death and less erectogenic nitrergic neurons contributing to ED. STRENGTHS & LIMITATIONS: The advantages of dissociated neuron culture include distinct neurites which are easily measured for apoptosis, length/branching, and specific neuron types. In contrast, whole MPG culture is advantageous as it contains all the supporting cells present in vivo. CONCLUSION: The 2 different culture methods demonstrated opposing neurite growth after RT indicating the importance of supporting cell network to promote pelvic neuron neuritogenesis and survival following RT. Randolph JT, Pak ES, Koontz BF, et al. Ex Vivo Radiation Leads to Opposing Neurite Growth in Whole Ganglia vs Dissociated Cultured Pelvic Neurons. J Sex Med 2020;17:1423-1433.


Assuntos
Disfunção Erétil , Radiação , Animais , Células Cultivadas , Gânglios , Humanos , Masculino , Neuritos , Ratos , Ratos Sprague-Dawley
5.
J Sex Med ; 16(1): 27-41, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30621923

RESUMO

BACKGROUND: Erectile dysfunction (ED) is common following radiation therapy (RT) for prostate cancer. Although the cause of RT-induced ED is unknown, damage to both the neuronal and vascular components supporting erections are often implicated. AIM: To determine the effects of prostatic RT on erections, penile vascular physiology, and major pelvic ganglia (MPG) neuron growth and survival in a rat model. METHODS: Male rats underwent 0 Gy or 22 Gy single fraction of prostate-confined, conformal RT. At 2 weeks or 10 weeks post-RT (n = 10/group), cavernous nerve stimulation was performed and erections were assessed. Tissue bath experiments were performed to assess both penile artery and internal pudendal artery (IPA) function. MPGs were dissociated and neurons grown in culture for 72 hours. Immunofluorescence staining was done to quantify neuron survival (terminal deoxynucleotidyl transferase nick-end labeling), outgrowth (beta-tubulin III), type (nitric oxide synthase [nNOS] and tyrosine hydroxylase [TH]), and nerve injury markers (small GTPase Rac1 and ninjurin-1 [Ninj-1]). Whole MPG real-time quantitative polymerase chain reaction (qPCR) was performed to measure expression of genes related to nerve type, neuron injury, repair, and myelination, such as Ninj-1, Rac1, ATF3, GAP43, GFAP, SOX10, and KROX20. OUTCOMES: Intracavernosal pressure (ICP) to mean arterial pressure (MAP) ratio, smooth muscle contractility and relaxation, gene expression, neuritogenesis, and apoptosis. RESULTS: Following RT, ICP/MAP was unchanged at 2 weeks or 10 weeks. Nerve-mediated penile contraction was increased at 2 weeks, whereas adrenergic contraction was reduced at 10 weeks. Penile relaxation and IPA vasoreactivity were unchanged. Neuronal apoptosis was more than doubled both early and late post-RT. RT caused a progressive decrease in neurite branching but an early increase and then late decrease in neurite lengthening. RT reduced the numbers of nNOS-positive neurons both early and late and also decreased MPG nitrergic gene expression. TH neurons and gene expression were unchanged at 2 weeks; however, both were decreased after 10 weeks. Although most markers of gene injury and repair were unaffected early post-RT, MPG expression of Ninj1 and GFAP increased. After 10 weeks, Ninj1 and GFAP remained elevated while markers of neuron injury (ATF3), outgrowth (GAP43 and Rac1), and myelin regulation (SOX10) were decreased. CLINICAL TRANSLATION: RT-induced ED may result from damage to the ganglia controlling erections. STRENGTHS & LIMITATIONS: This study used a clinically relevant, prostate-confined model to examine neurovascular structures not accessible in human studies. Unfortunately, rats did not exhibit ED at this time point. CONCLUSION: This is the first study to demonstrate impaired health and regeneration potential of dissociated MPG neurons following RT. Neuronal injury was apparent early post-RT and persisted or increased over time but was insufficient to cause ED at the time points examined. Powers SA, Odom MR, Pak ES, et al. Prostate-Confined Radiation Decreased Pelvic Ganglia Neuronal Survival and Outgrowth. J Sex Med 2019;16:27-41.


Assuntos
Disfunção Erétil/etiologia , Ereção Peniana/efeitos da radiação , Neoplasias da Próstata/radioterapia , Animais , Modelos Animais de Doenças , Gânglios/metabolismo , Plexo Hipogástrico/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Pênis/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traumatismos do Sistema Nervoso/complicações , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Neurourol Urodyn ; 38(6): 1524-1532, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31074529

RESUMO

AIMS: To assess the impact of chronic high-fat diet (HFD) on behavioral voiding patterns, detrusor contractility, and smooth muscle mitochondrial function in male mice. MATERIALS AND METHODS: Male C57BL/6J mice (6 weeks) were fed a control or HFD for 20 weeks. Bladder function was assessed by void spot assays. Bladders were collected and detrusor contractility to carbachol (10-9 -10-5 M), and electrical field stimulation (EFS, 0.5-32 Hz) in the presence and absence of atropine was measured. Homogenized detrusor samples were placed in oxygraphs to assess the rate of oxygen consumption of the mitochondria within the detrusor in the presence of different substrates. Mitochondrial hydrogen peroxide (H2 O2 ) emission was measured fluorometrically. Detrusor citrate synthase activity was measured via enzyme activity kit and Western blots assessed the electron transport chain (ETC) protein content. RESULTS: HFD significantly increased body weight, adiposity, and blood glucose levels. HFD mice demonstrated increased voiding frequency and increased EFS-induced detrusor contractility. There were no changes in detrusor relaxation or cholinergic-medicated contraction. Mitochondrial respiration was decreased with HFD and H2 O 2 emission was increased. The relative amount of mitochondria in the detrusor was similar between groups. However, ETC complexes V and III were increased following HFD. CONCLUSIONS: Chronic HFD increased adiposity, lead to more frequent voiding, and enhanced EFS-mediated detrusor contractions. Mitochondrial respiration was decreased and H2 O 2 emission increased following HFD. Further research is required to determine if alterations in mitochondrial function could play a role in the development of HFD-induced bladder dysfunction.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mitocôndrias Musculares/metabolismo , Bexiga Urinária/fisiopatologia , Adiposidade , Animais , Carbacol/farmacologia , Estimulação Elétrica , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Consumo de Oxigênio , Bexiga Urinária/metabolismo , Urodinâmica/efeitos dos fármacos
7.
Neurourol Urodyn ; 37(3): 952-959, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28984997

RESUMO

AIMS: Denervation of the bladder is a detrimental consequence of bladder outlet obstruction (BOO). We have previously shown that, during BOO, inflammation triggered by the NLRP3 inflammasome in the urothelia mediates physiological bladder dysfunction and downstream fibrosis in rats. The aim of this study was to assess the effect of NLRP3-mediated inflammation on bladder denervation during BOO. METHODS: There were five groups of rats: (i) Control (no surgery); (ii) Sham-operated; (iii) BOO rats given vehicle; (iv) BOO rats given the NLRP3 inhibitor glyburide; and (v) BOO rats given the IL-1 receptor antagonist anakinra. BOO was constructed by ligating the urethra over a 1 mm catheter and removing the catheter. Medications were given prior to surgery and once daily for 12 days. Bladder sections were stained for PGP9.5, a pan-neuronal marker. Whole transverse sections were used to identify and count nerves while assessing cross-sectional area. For in vitro studies, pelvic ganglion neurons were isolated and treated with IL-1ß. After a 48 h incubation apoptosis, neurite length and branching were assessed. RESULTS: In obstructed bladders, the number of nerves decreased while total area increased, indicating a loss of cell number and/or branching. The decrease in nerve density was blocked by glyburide or anakinra, clearly implicating the NLRP3 pathway in denervation. In vitro analysis demonstrated that IL-1ß, a product of the inflammasome, induced apoptosis in pelvic ganglion neurons, suggesting one mechanism of BOO-induced denervation is NLRP3/IL-1ß triggered apoptosis. CONCLUSIONS: The NLRP3/IL-1ß-mediated inflammation pathway plays a significant role in denervation during BOO.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Bexiga Urinária/inervação , Animais , Apoptose/fisiologia , Denervação , Feminino , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-1beta/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Uretra/metabolismo , Uretra/fisiopatologia , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Obstrução do Colo da Bexiga Urinária/fisiopatologia , Urotélio/metabolismo , Urotélio/fisiopatologia
8.
FASEB J ; 30(2): 775-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26506979

RESUMO

Obesity has more than doubled in children and tripled in adolescents in the past 30 yr. The association between metabolic disorders in offspring of obese mothers with diabetes has long been known; however, a growing body of research indicates that fathers play a significant role through presently unknown mechanisms. Recent observations have shown that changes in paternal diet may result in transgenerational inheritance of the insulin-resistant phenotype. Although diet-induced epigenetic reprogramming via paternal lineage has recently received much attention in the literature, the effect of paternal physical activity on offspring metabolism has not been adequately addressed. In the current study, we investigated the effects of long-term voluntary wheel-running in C57BL/6J male mice on their offspring's predisposition to insulin resistance. Our observations revealed that fathers subjected to wheel-running for 12 wk produced offspring that were more susceptible to the adverse effects of a high-fat diet, manifested in increased body weight and adiposity, impaired glucose tolerance, and elevated insulin levels. Long-term paternal exercise also altered expression of several metabolic genes, including Ogt, Oga, Pdk4, H19, Glut4, and Ptpn1, in offspring skeletal muscle. Finally, prolonged exercise affected gene methylation patterns and micro-RNA content in the sperm of fathers, providing a potential mechanism for the transgenerational inheritance. These findings suggest that paternal exercise produces offspring with a thrifty phenotype, potentially via miRNA-induced modification of sperm.


Assuntos
Adiposidade , Metabolismo Energético , Epigênese Genética , Resistência à Insulina , Obesidade/metabolismo , Condicionamento Físico Animal , Animais , Masculino , Camundongos , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/genética , Obesidade/patologia
9.
J Sex Med ; 14(11): 1285-1296, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29110801

RESUMO

BACKGROUND: The internal pudendal arteries (IPAs) supply blood to the penis and are highly susceptible to vascular remodeling in rodent models of diabetes, hypertension, aging, and chronic kidney disease, thus contributing to erectile dysfunction. Interestingly, vascular remodeling primarily occurs in the distal and not in the proximal IPA, suggesting distinct local physiologic signaling differences within the IPA. AIM: To examine the role of purinergic signaling and neurotransmitter release by electrical field stimulation (EFS) in the regulation of proximal and distal IPA vascular tone. METHODS: Proximal and distal IPAs were mounted in wire myographs and vascular responses to phenylephrine, acetylcholine, and 2-(N,N-diethylamino)-diazenolate-2-oxide, diethyl-ammonium salt (DEA NONOate) were measured. EFS-mediated contraction and non-adrenergic non-cholinergic (NANC) relaxation were evaluated in the absence and presence of a nitric oxide synthase antagonist. Purinergic agonist and NANC relaxation responses were assessed in the presence and absence of P2X1 and P2Y1 antagonists. Protein expression of P2X1 and P2Y1 receptors was measured by western blot. MAIN OUTCOME MEASURES: Proximal and distal IPA contraction and relaxation were measured during increasing agonist administration and EFS in the presence and absence of antagonists. RESULTS: Proximal and distal IPA concentration response curves to phenylephrine, acetylcholine, and DEA NONOate did no differ. Interestingly, distal IPA exhibited greater EFS-mediated contraction and NANC relaxation compared with proximal IPA. Nitric oxide synthase inhibition completely inhibited distal IPA NANC relaxation but did not affect proximal IPA relaxation. P2X1 or P2Y1 receptor antagonism during NANC relaxation increased distal IPA relaxation but decreased proximal IPA relaxation. Combined P2X1 and P2Y1 receptor antagonism had no effect on proximal IPA relaxation but significantly increased distal IPA NANC relaxation. CLINICAL TRANSLATION: Understanding neurovascular regulation of IPA vascular tone through nitrergic and purinergic mechanisms could yield new therapeutic targets to improve IPA blood flow and treat vasculogenic erectile dysfunction. STRENGTHS AND LIMITATIONS: This study is the first to illustrate the differences in mechanisms responsible for regulating vascular tone in the proximal and distal IPAs. All presented findings are currently limited to ex vivo vascular function. CONCLUSION: The regulation of vascular tone differs regionally in the IPA. The distal IPA is controlled through neurotransmitter-mediated NO-dependent mechanisms and increased sensitivity to purinergic P2X1 and P2Y1 receptor inhibition. Odom MR, Pak ES, Brown DA, Hannan JL. Enhanced Electrical Field Stimulated Nitrergic and Purinergic Vasoreactivity in Distal vs Proximal Internal Pudendal Arteries. J Sex Med 2017;14:1285-1296.


Assuntos
Estimulação Elétrica , Disfunção Erétil/prevenção & controle , Pênis/irrigação sanguínea , Acetilcolina/farmacologia , Animais , Artérias/efeitos dos fármacos , Western Blotting , Inibidores Enzimáticos/farmacologia , Masculino , Relaxamento Muscular/efeitos dos fármacos , Fenilefrina/farmacologia , Transmissão Sináptica
10.
Cureus ; 16(8): e66374, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39246936

RESUMO

Introduction Radiation therapy (RT) is the gold standard for many pelvic cancers and improves overall patient survival. However, pelvic RT is associated with increased sexual dysfunction and urinary incontinence. Although the side effects of pelvic RT are well-documented, the pathological mechanisms leading to pelvic organ dysfunction are unknown, and a preclinical model has not been established. This study characterized the impact of pelvic RT at early and late timepoints on female rat bladder, vaginal, and urethral physiology and morphology. Methods Adult female Sprague-Dawley rats were divided into three groups (n = 8/group): (I) Sham, (II) four weeks RT (4wk RT), and (III) nine weeks RT (9wk RT). The RT groups received a single dose of 20 Gy external beam radiation, and experiments were conducted at 4wk and 9wk post-RT. Nerve-mediated vaginal blood flow was measured via laser Doppler. Tissue bath studies assessed vaginal contractility to electric field stimulation (EFS), adrenergic and cholinergic agonists, and relaxation to a nitric oxide donor. Bladder and urethral sphincters were evaluated for cholinergic, caffeine, and EFS-mediated contractility. Quantitative polymerase chain reaction (qPCR) measured gene expression of markers of oxidative stress. Vaginal, bladder, and urethral fibrosis were assessed with Masson's trichrome staining. Results At 4wk post-RT, total vaginal blood flow decreased, and at 9wk post-RT, returned to baseline levels. At 9wk post-RT, vaginal neurogenic and adrenergic-mediated contractile responses increased significantly. Vaginal epithelial thickness decreased post-RT and correlated with an acute rise in vaginal inflammatory gene expression. At 4wk post-RT, bladder neurogenic contractions decreased and remained lowered. Internal urethral contractions increased at 4wk post-RT and returned to Sham levels after 9wk post-RT. Pelvic RT increased external urethral neurogenic contractions, which remained elevated. Conclusion This novel preclinical model provides valuable insights into the temporal pathophysiology of pelvic RT-induced sexual and urinary dysfunction. The establishment of this model is crucial for understanding the underlying mechanisms involved in RT-induced pelvic injury. A reliable, clinically relevant model will allow for the testing of therapeutic strategies to prevent adverse effects with RT in pelvic cancer survivors.

11.
Sex Med ; 11(1): qfac009, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37007853

RESUMO

Background: Diabetes mellitus (DM) is a common cause of erectile dysfunction (ED), yet the molecular basis of DM neurogenic ED remains unknown. Aim: In this study we examined the impact of high glucose on survival and growth of primary cultured pelvic neurons in a rat model and assessed whether coculturing with healthy Schwann cells (SCs) can rescue pelvic neuron growth in patients with DM. Methods: Major pelvic ganglia (MPGs) from adult male Sprague Dawley rats (n = 8) were dissociated and plated on coverslips. Neurons were exposed to high glucose (45 mM) for 24 or 48 hours and compared to time-matched controls (25 mM). Neurons were stained for neuron-specific beta-tubulin, neuronal nitric oxide synthase, vesicular acetylcholine transferase, tyrosine hydroxylase, and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling) assay. Schwann cells were dissociated from MPGs of healthy male Sprague Dawley rats (n = 4) and grown to confluence. Additional Sprague Dawley rats were made diabetic with streptozotocin (50 mg/kg, n = 4), and 5 weeks later MPGs were collected from these rats, dissociated, and cocultured on healthy SCs. Neurons and SCs were stained with beta-tubulin and S100. Outcomes: Length, branching, and survival of nitrergic, parasympathetic, and sympathetic neurons was assessed in neurons exposed to normal or high glucose concentrations, and neuron length was measured in neuron-SC coculture. Results: The total number of neurons and the length and number of branches were significantly decreased after 24 and 48 hours of high glucose (P < .05). The percentage of nitrergic neurons decreased 10% after 24 hours and 50% after 48 hours of high glucose (P < .05). After 24 hours of high glucose, cholinergic-positive neurons were unchanged; however, these neurons decreased 30% after 48 hours (P < .05). The proportion of sympathetic neurons increased 25% after 48 hours of high glucose (P < .05). At both timepoints, there was a 2-fold increase in the total apoptotic neurons with high glucose (P < .05). Neurite outgrowth recovered to control lengths after coculture of diabetic neurons with healthy SCs (P < .05). Clinical Translation: Glucose can be used as a tool to investigate the direct effects of DM on neuritogenesis. Our data suggest that an effective treatment for DM ED protects and repairs the penile neuronal supply. Strengths and Limitations: Exposing MPG neurons to high glucose offers a quick and, inexpensive proxy for DM-related conditions. A limitation of our study is that our model reflects type 1 DM, whereas clinically, most diabetic ED patients have type 2 DM. Conclusion: Culturing pelvic neurons in high glucose can be used as a tool to elucidate how to protect proerectile neurons from cell death and may lead to new therapeutic strategies for diabetic men suffering from ED.

12.
J Glob Infect Dis ; 15(2): 81-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469466

RESUMO

Here, we present a case of severe meningoencephalitis caused by combined infection with tick-borne encephalitis (TBE) and Lyme borreliosis (LB) in a 25-year-old woman in a rural area of Zhambyl region, Kazakhstan. She presented with fever, nausea, vomiting, weakness, sweating, severe headache, arthralgia, and malaise. The course of illness was further complicated by encephalitis with symmetric lesions of the midbrain cerebral peduncles and serous meningitis. TBE and LB co-infection were established by a two-fold increase in serum IgG titers between day 21 and day 25 of illness. Both infections responded well to combined therapy with human TBE immunoglobulins, antibiotics, antiviral drugs, glucocorticoids, and diuretics. The outcome of the disease was favorable and the patient recovered completely.

13.
Int J Impot Res ; 34(3): 308-316, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33947973

RESUMO

Obesity can lead to cardiovascular disease, diabetes, and erectile dysfunction (ED), which decreases overall quality of life. Mechanisms responsible for obesity-induced ED are unknown. Current mouse models of high-fat diet (HFD)-induced obesity yield conflicting results. Genetic variants among common "wild type" strains may explain contradictory data. Adult male C57BL/6N and 6J mice were fed a 45% HFD for 12 weeks. Weekly food intake, weight gain, and body-fat percentage were measured. After 12 weeks, ex vivo vascular reactivity was measured in aortas, internal pudendal arteries, and penises. We assessed smooth muscle contractility, endothelial-dependent and -independent relaxation, and penile neurotransmitter-mediated relaxation. C57BL/6N mice developed greater obesity and glucose sensitivity compared to C57BL/6J mice. Aortas from both strains that fed a HFD had decreased contraction, yet contraction was unchanged in HFD pudendal arteries and penises. Interestingly, endothelial-dependent and -independent relaxation was unchanged in both systemic and penile vasculature. Likewise, HFD did not impair penile neurotransmitter-mediated relaxation. Both strains fed 12 weeks of HFD-developed obese phenotypes. However, HFD did not impair pre-penile or penile smooth muscle vasoreactivity as demonstrated in previous studies, suggesting that this preclinical model does not accurately represent the clinical phenotype of obesity-induced ED.


Assuntos
Dieta Hiperlipídica , Disfunção Erétil , Animais , Dieta Hiperlipídica/efeitos adversos , Disfunção Erétil/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Pênis , Qualidade de Vida
14.
J Huntingtons Dis ; 11(1): 59-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35253773

RESUMO

BACKGROUND: Biomarkers are needed to monitor disease progression, target engagement and efficacy in Huntington's disease (HD). Cerebrospinal fluid (CSF) is an ideal medium to research such biomarkers due to its proximity to the brain. OBJECTIVE: To investigate the safety and feasibility of research lumbar punctures (LP) in HD. METHODS: HDClarity is an ongoing international biofluid collection initiative built on the Enroll-HD platform, where clinical assessments are recorded. It aims to recruit 1,200 participants. Biosamples are collected following an overnight fast: blood via venipuncture and CSF via LP. Participants are healthy controls and HD gene expansion carriers across the disease spectrum. We report on monitored data from February 2016 to September 2019. RESULTS: Of 448 participants screened, 398 underwent at least 1 sampling visit, of which 98.24% were successful (i.e., CSF was collected), amounting to 10,610 mL of CSF and 8,200 mL of plasma. In the total 572 sampling visits, adverse events were reported in 24.13%, and headaches of any kind and post-LP headaches in 14.86% and 12.24%, respectively. Frequencies were less in manifest HD; gender, age, body mass index and disease burden score were not associated with the occurrence of the events in gene expansion carriers. Headaches and back pain were the most frequent adverse events. CONCLUSION: HDClarity is the largest CSF collection initiative to support scientific research into HD and is now stablished as a leading resource for HD research. Our data confirm that research LP in HD are feasible and acceptable to the community, and have a manageable safety profile.


Assuntos
Doença de Huntington , Biomarcadores , Estudos de Viabilidade , Cefaleia/etiologia , Humanos , Doença de Huntington/genética , Punção Espinal/efeitos adversos
15.
J Vis Exp ; (176)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723949

RESUMO

This protocol describes a new paradigm for analyzing aversive associative learning in adult flies (Drosophila melanogaster). The paradigm is analogous to passive avoidance behavior in laboratory rodents in which animals learn to avoid a compartment where they have previously received an electric shock. The assay takes advantage of negative geotaxis in flies, which manifests as an urge to climb up when they are placed on a vertical surface. The setup consists of vertically oriented upper and lower compartments. On the first trial, a fly is placed into a lower compartment from where it usually exits within 3-15 s, and steps into the upper compartment where it receives an electric shock. During the second trial, 24 h later, the latency is significantly increased. At the same time, the number of shocks is decreased compared to the first trial, indicating that flies formed long-term memory about the upper compartment. The recordings of latencies and number of shocks could be performed with a tally counter and a stopwatch or with an Arduino-based simple device. To illustrate how the assay can be used, the passive avoidance behavior of D. melanogaster and D. simulans male and female were characterized here. Comparison of latencies and number of shocks revealed that both D. melanogaster and D. simulans flies efficiently learned the passive avoidance behavior. No statistical differences were observed between male and female flies. However, males were a little faster while entering the upper compartment on the first trial, while females received a slightly higher number of shocks in every retention trial. The Western diet (WD) significantly impaired learning and memory in male flies while flight exercise counterbalanced this effect. Taken together, the passive avoidance behavior in flies offers a simple and reproducible assay that could be used for studying basic mechanisms of learning and memory.


Assuntos
Aprendizagem da Esquiva , Drosophila melanogaster , Animais , Condicionamento Clássico , Drosophila , Feminino , Masculino
16.
Life Sci ; 285: 119966, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543641

RESUMO

AIMS: Androgen deprivation therapy is a common prostate cancer treatment which causes men to have castrate levels of testosterone. Unfortunately, most testosterone deficient patients will suffer severe erectile dysfunction (ED) and have no effective ED treatment options. Testosterone deficiency causes endothelial dysfunction and impairs penile vasodilation necessary to maintain an erection. Recent evidence demonstrates testosterone activates androgen receptors (AR) and generates nitric oxide (NO) through the Akt-endothelial NO synthase (eNOS) pathway; however, it remains unknown how castration impacts this signaling pathway. MATERIALS AND METHODS: In this study, we used a surgically castrated rat model to determine how castration impacts ex vivo internal pudendal artery (IPA) and penile relaxation through the Akt-eNOS pathway. KEY FINDINGS: Unlike systemic vasculature, castration causes significant IPA and penis endothelial dysfunction associated with a 50% AR reduction. Though testosterone and acetylcholine (ACh) both phosphorylate Akt and eNOS, castration did not affect testosterone-mediated IPA and penile Akt or eNOS phosphorylation. Surprisingly, castration increases ACh-mediated Akt and eNOS phosphorylation but reduces the eNOS dimer to monomer ratio. Akt inhibition using 10DEBC preserves IPA eNOS dimers. Functionally, 10DEBC reverses castration induced ex vivo IPA and penile endothelial dysfunction. SIGNIFICANCE: These data demonstrate how castration uncouples eNOS and provide a novel strategy for improving endothelial-dependent relaxation necessary for an erection. Further studies are needed to determine if Akt inhibition may treat or even prevent ED in testosterone deficient prostate cancer survivors.


Assuntos
Castração/efeitos adversos , Endotélio Vascular/enzimologia , Artéria Ilíaca/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Pênis/irrigação sanguínea , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testosterona/deficiência , Vasodilatação/fisiologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Artéria Ilíaca/efeitos dos fármacos , Artéria Ilíaca/fisiopatologia , Masculino , Modelos Animais , Ereção Peniana/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
17.
FASEB Bioadv ; 3(1): 49-64, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490883

RESUMO

High saturated fat, sugar, and salt contents are a staple of a Western diet (WD), contributing to obesity, metabolic syndrome, and a plethora of other health risks. However, the combinatorial effects of these ingredients have not been fully evaluated. Here, using the wild-caught Drosophila simulans, we show that a diet enriched with saturated fat, sugar, and salt is more detrimental than each ingredient separately, resulting in a significantly decreased lifespan, locomotor activity, sleep, reproductive function, and mitochondrial function. These detrimental effects were more pronounced in female than in male flies. Adding regular flight exercise to flies on the WD markedly negated the adverse effects of a WD. At the molecular level, the WD significantly increased levels of triglycerides and caused mitochondrial dysfunction, while exercise counterbalanced these effects. Interestingly, fruit flies developed a preference for the WD after pre-exposure, which was averted by flight exercise. The results demonstrate that regular aerobic exercise can mitigate adverse dietary effects on fly mitochondrial function, physiology, and feeding behavior. Our data establish Drosophila simulans as a novel model of diet-exercise interaction that bears a strong similarity to the pathophysiology of obesity and eating disorders in humans.

18.
Korean J Radiol ; 22(9): 1514-1524, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34269536

RESUMO

OBJECTIVE: To develop a radiomics risk score based on dynamic contrast-enhanced (DCE) MRI for prognosis prediction in patients with glioblastoma. MATERIALS AND METHODS: One hundred and fifty patients (92 male [61.3%]; mean age ± standard deviation, 60.5 ± 13.5 years) with glioblastoma who underwent preoperative MRI were enrolled in the study. Six hundred and forty-two radiomic features were extracted from volume transfer constant (Ktrans), fractional volume of vascular plasma space (Vp), and fractional volume of extravascular extracellular space (Ve) maps of DCE MRI, wherein the regions of interest were based on both T1-weighted contrast-enhancing areas and non-enhancing T2 hyperintense areas. Using feature selection algorithms, salient radiomic features were selected from the 642 features. Next, a radiomics risk score was developed using a weighted combination of the selected features in the discovery set (n = 105); the risk score was validated in the validation set (n = 45) by investigating the difference in prognosis between the "radiomics risk score" groups. Finally, multivariable Cox regression analysis for progression-free survival was performed using the radiomics risk score and clinical variables as covariates. RESULTS: 16 radiomic features obtained from non-enhancing T2 hyperintense areas were selected among the 642 features identified. The radiomics risk score was used to stratify high- and low-risk groups in both the discovery and validation sets (both p < 0.001 by the log-rank test). The radiomics risk score and presence of isocitrate dehydrogenase (IDH) mutation showed independent associations with progression-free survival in opposite directions (hazard ratio, 3.56; p = 0.004 and hazard ratio, 0.34; p = 0.022, respectively). CONCLUSION: We developed and validated the "radiomics risk score" from the features of DCE MRI based on non-enhancing T2 hyperintense areas for risk stratification of patients with glioblastoma. It was associated with progression-free survival independently of IDH mutation status.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Humanos , Isocitrato Desidrogenase , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
19.
Int J Radiat Oncol Biol Phys ; 103(5): 1212-1220, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529374

RESUMO

PURPOSE: Radiation therapy (RT) offers an important and curative approach to treating prostate cancer, but it is associated with a high incidence of erectile dysfunction (ED). It is not clear whether the etiology of radiation-induced ED (RI-ED) is driven by RT-mediated injury to the vasculature, the nerves, or both. This pilot study sought to distinguish the effects of vascular and nerve injury in RI-ED by applying a vascular radioprotectant in a rat model of prostate RT. METHODS: A single dose of the thrombopoietin mimetic (TPOm; RWJ-800088), previously shown to mitigate radiation-induced vascular injury, was administered 10 minutes after single-fraction conformal prostate RT. Nine weeks after RT, rats were assessed for erectile and arterial function. Nerve markers were quantified with reverse transcriptase polymerase chain reaction. Immunofluorescent microscopy further characterized vascular effects of RT and TPOm. RESULTS: Sham animals and animals that received RT and TPOm showed significant arterial vasodilation in response to systemic hydralazine (24.1% ± 7.3% increase; P = .03 in paired t test). However, animals that received RT and vehicle were unable to mount a vasodilatory response (-7.4% ± 9.9% increase; P = .44 in paired t test). TPOm prevented RT-induced change in the penile artery cross-sectional area (P = .036), but it did not ameliorate cavernous nerve injury as evaluated by gene expression of neuronal injury markers. Despite significant structural and functional vascular protective effects and some trends for differences in nerve injury/recovery markers, TPOm did not prevent RI-ED at 9 weeks, as assessed by intracavernous pressure monitoring after cavernous nerve stimulation. CONCLUSIONS: These data suggest that vascular protection alone is not sufficient to prevent RI-ED and that cavernous nerve injury plays a key role in RI-ED. Further research is required to delineate the multifactorial nature of RI-ED and to determine if TPOm with modified dosing regimens can mitigate against nerve injury either through direct or vascular protective effects.


Assuntos
Disfunção Erétil/prevenção & controle , Pênis/efeitos da radiação , Peptídeos/administração & dosagem , Próstata/efeitos da radiação , Protetores contra Radiação/administração & dosagem , Vasodilatação/efeitos da radiação , Animais , Artérias/diagnóstico por imagem , Artérias/efeitos dos fármacos , Modelos Animais de Doenças , Disfunção Erétil/etiologia , Hidralazina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Manometria/métodos , Ereção Peniana/efeitos dos fármacos , Ereção Peniana/fisiologia , Ereção Peniana/efeitos da radiação , Pênis/irrigação sanguínea , Pênis/efeitos dos fármacos , Pênis/inervação , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Ultrassonografia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
20.
FASEB J ; 21(3): 656-70, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17209129

RESUMO

Recent observations demonstrated that translation of mRNAs may occur in axonal processes at sites that are long distances away from the neuronal perikaria. While axonal protein synthesis has been documented in several studies, the mechanism of its regulation remains unclear. The aim of this study was to investigate whether RNA interference (RNAi) may be one of the pathways that control local protein synthesis in axons. Here we show that sciatic nerve contains Argonaute2 nuclease, fragile X mental retardation protein, p100 nuclease, and Gemin3 helicase-components of the RNA-induced silencing complex (RISC). Application of short-interfering RNAs against neuronal beta-tubulin to the sciatic nerve initiated RISC formation, causing a decrease in levels of neuronal beta-tubulin III mRNA and corresponding protein, as well as a significant reduction in retrograde labeling of lumbar motor neurons. Our observations indicate that RNAi is functional in peripheral mammalian axons and is independent from the neuronal cell body or Schwann cells. We introduce a concept of local regulation of axonal translation via RNAi.


Assuntos
Axônios/metabolismo , Nervos Periféricos/citologia , Proteínas/metabolismo , Interferência de RNA/fisiologia , Animais , Proteína DEAD-box 20 , RNA Helicases DEAD-box/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA