RESUMO
Extracellular vesicles or exosomes, often known as EVs, have acquired significant attention in the investigations of traumatic brain injury (TBI) and have a distinct advantage in actively researching the fundamental mechanisms underlying various clinical symptoms and diagnosing the wide range of traumatic brain injury cases. The mesenchymal stem cells (MSCs) can produce and release exosomes, which offer therapeutic benefits. Exosomes are tiny membranous vesicles produced by various cellular entities originating from endosomes. Several studies have reported that administering MSC-derived exosomes through intravenous infusions improves neurological recovery and promotes neuroplasticity in rats with traumatic brain damage. The therapeutic advantages of exosomes can be attributed to the microRNAs (miRNAs), which are small non-coding regulatory RNAs that significantly impact the regulation of posttranscriptional genes. Exosome-based therapies, which do not involve cells, have lately gained interest as a potential breakthrough in enhancing neuroplasticity and accelerating neurological recovery for various brain injuries and neurodegenerative diseases. This article explores the benefits and drawbacks of exosome treatment for traumatic brain injury while emphasizing the latest advancements in this field with clinical significance.
Assuntos
Lesões Encefálicas Traumáticas , Exossomos , Vesículas Extracelulares , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Humanos , Vesículas Extracelulares/metabolismo , Animais , Exossomos/metabolismo , Plasticidade Neuronal/fisiologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismoRESUMO
Nasopharyngeal carcinoma (NPC) is a common head and neck cancer with a poor prognosis. One of the crucial challenges regarding NPC is its pathogenesis. Recent findings highlight the significance of host microbiota in the development of NPC, affected locally by nasopharyngeal microbiota or remotely by oral microbiota. The oral microbiota can migrate to the nasopharyngeal space, thereby impacting the composition of the nasopharyngeal microbiota. Specific bacterial strains have been linked to the development of nasopharyngeal cancer, including Neisseria, Staphylococcus, Leptotrichia, Staphylococcaceae, Granulicatella, Corynebacterium, Fusobacterium, and Prevotella. Several mechanisms have been proposed to elucidate how microbiota dysbiosis contributes to the development of NPC, including triggering tumor-promoting inflammation, reactivating the Epstein-Barr virus (EBV), inducing oxidative stress, weakening the immune system, and worsening tumor hypoxia. In addition, the composition of nasopharyngeal microbiota and the number of tumor-infiltrating microbiota can influence the prognosis and treatment response in patients with NPC. To the best of our knowledge, this is the first review discussing the impacts of the host microbiota on nasopharyngeal cancer pathogenesis, progression, and treatment response.
Assuntos
Microbiota , Neoplasias Nasofaríngeas , Humanos , Neoplasias Nasofaríngeas/microbiologia , Neoplasias Nasofaríngeas/virologia , Disbiose/complicações , Disbiose/microbiologia , Carcinoma Nasofaríngeo/microbiologia , Carcinoma Nasofaríngeo/virologia , Prognóstico , Nasofaringe/microbiologiaRESUMO
Non-coding RNAs that are small in size, called microRNAs (miRNAs), exert a consequence in neutralizing gene activity after transcription. The nervous system is a massively expressed organ, and an expanding body of research reveals the vital functions that miRNAs play in the brain's growth and neural activity. The significant benefit of miRNAs on the development of the central nervous system is currently shown through new scientific methods that concentrate on targeting and eradicating vital miRNA biogenesis pathways the elements involving Dicer and DGCR8. Modulation of miRNA has been associated with numerous essential cellular processes on neural progenitors, like differentiation, proliferation, and destiny determination. Current research discoveries that emphasize the significance of miRNAs in the complex process of brain development are included in this book. The miRNA pathway plays a major role in brain development, its operational dynamics, and even diseases. Recent studies on miRNA-mediated gene regulation within neural discrepancy, the circadian period and synaptic remodeling are signs of this. We also discussed how these discoveries may affect our comprehension of the fundamental processes behind brain diseases, highlighting the novel therapeutic opportunities miRNAs provide for treating various human illnesses.
Assuntos
Encéfalo , MicroRNAs , MicroRNAs/genética , Humanos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Animais , Ribonuclease III/genética , Ribonuclease III/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neurogênese/genética , Diferenciação Celular/genéticaRESUMO
This review article explores the dynamic field of radiopharmaceuticals, where innovative developments arise from combining radioisotopes and pharmaceuticals, opening up exciting therapeutic possibilities. The in-depth exploration covers targeted drug delivery, delving into passive targeting through enhanced permeability and retention, as well as active targeting using ligand-receptor strategies. The article also discusses stimulus-responsive release systems, which orchestrate controlled release, enhancing precision and therapeutic effectiveness. A significant focus is placed on the crucial role of radiopharmaceuticals in medical imaging and theranostics, highlighting their contribution to diagnostic accuracy and image-guided curative interventions. The review emphasizes safety considerations and strategies for mitigating side effects, providing valuable insights into addressing challenges and achieving precise drug delivery. Looking ahead, the article discusses nanoparticle formulations as cutting-edge innovations in next-generation radiopharmaceuticals, showcasing their potential applications. Real-world examples are presented through case studies, including the use of radiolabelled antibodies for solid tumors, peptide receptor radionuclide therapy for neuroendocrine tumors, and the intricate management of bone metastases. The concluding perspective envisions the future trajectory of radiopharmaceuticals, anticipating a harmonious integration of precision medicine and artificial intelligence. This vision foresees an era where therapeutic precision aligns seamlessly with scientific advancements, ushering in a new epoch marked by the fusion of therapeutic resonance and visionary progress.
Assuntos
Medicina de Precisão , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Inteligência ArtificialRESUMO
Drug delivery through the blood-brain barrier (BBB) is one of the key challenges in the modern era of medicine due to the highly semipermeable characteristics of BBB that restrict the entry of various drugs into the central nervous system (CNS) for the management of brain disorders. Drugs can be easily incorporated into carbon nanocarriers that can cross the bloodbrain barrier. Numerous nanocarriers have been developed, including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, etc. Among these, carbon nanostructures could be superior due to their easier BBB penetration and strong biocompatibility. Several CDs (Carbon dots) and CD-ligand conjugates have explored effectively penetrating the BBB, which enables significant progress in using CD-based drug delivery systems (DDS) to manage CNS diseases. Despite the drug delivery applications, they might also be used as a central nervous system (CNS) drug; few of the carbon nanostructures show profound neurodegenerative activity. Further, their impact on neuronal growth and anti- amyloid action is quite interesting. The present study covers diverse carbon nanostructures for brain-targeted drug delivery, exploring a variety of CNS activities. Moreover, it emphasizes recent patents on carbon nanostructures for CNS disorders.
RESUMO
Emulgel is considered an advanced leading form of topical drug delivery system. It possesses the quality of a dual control drug mechanism for drug release as it holds the properties of both gel as well as emulsion. Emulgel is capable of overcoming the problems of the conventional route of topical drug delivery, like low spreadability and stickiness with the delivery of hydrophobic drugs, enhanced bioavailability at the local site of action, no greasy texture, and ensuring patient compliance. An emulsion is used either w/o or o/w, and the drug can be incorporated into the suitable phase of the emulsion. After that, the emulsion is incorporated into the gel phase. Several factors like oil phase, gelling agent, and emulsifier can affect the efficacy and stability. This advancement is beneficial not only for dermatology but also for cosmetology as well. Currently, emulgel-based formulations are used for the delivery of anti-inflammatory, analgesic, anti-acne, and antifungal drugs with a wide array of exploration.
RESUMO
This detailed review disclosed the NF-κB pro-inflammatory gen's activity regulation and explored the therapeutic significance, activation, and inhibition. This study uncovers the structural intricacies of the NF-κB proteins and highlights the key role of SIRT1 in NF-kB signaling pathway regulation. Particularly the Rel Homology Domain (RHD), elucidating interactions and the regulatory mechanisms involving inhibitory proteins like IκB and p100 within the NF-κB signaling cascade. Disruption of the pathway is important in uncontrolled inflammation and immune disorders. This study extensively describes the role connections of canonical and non-canonical signaling pathways of NF-κB with inflammatory and cellular responses. SIRT1 belongs to the class III histone deacetylase, via RelA/p65 deacetylation, it regulates the activity of NF-κB, closely linked with the NAD+/NADH cellular ratio, influencing stress responses, aging processes, gene regulation, and metabolic pathways. This detailed study reveals SIRT1 as a crucial avenue for uncovering the role of imbalanced NF-κB in diabetes, obesity, and atherosclerosis. This study provides valuable knowledge about the therapeutic targets of inflammatory disorders.