Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(5): e202300721, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226959

RESUMO

Glycated hemoglobin (GHb) found in mammals undergoes irreversible damage when exposed to external redox agents, which is much more vulnerable than its normal counterpart hemoglobin (Hb). Besides the oxygen regulation throughout the body, Hb plays a vital role in balancing immunological health and the redox cycle. Photoinduced ultra-fast electron transfer phenomena actively participate in regulation of various kind of homeostasis involved in such biomacromolecules. In the present study we have shown that a well-known mutagen Ethidium Bromide (EtBr) reduces GHb in femtosecond time scale (efficiently) upon photoexcitation after efficient recognition in the biomolecule. We have performed similar experiment by colocalizing EtBr and Iron (Fe(III)) on the micellar surface as Hb mimic in order to study the excited state EtBr dynamics to rationalize the time scale obtained from EtBr in GHb and Hb. While other experimental techniques including Dynamic Light Scattering (DLS), Zeta potential, absorbance and emission spectroscopy have been employed for the confirmation of structural perturbation of GHb compared to Hb, a detailed computational studies involving molecular docking and density functional theory (DFT) have been employed for the explanation of the experimental observations.


Assuntos
Substâncias Redutoras , Oxibato de Sódio , Animais , Hemoglobinas Glicadas , Mutagênicos , Simulação de Acoplamento Molecular , Elétrons , Compostos Férricos , Etídio , Mamíferos
2.
Chemphyschem ; 25(2): e202300635, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37936318

RESUMO

Liposomes of a cationic lipid dioctadecyldimethylammonium bromide (DODAB) are efficient nanocarriers of nucleic acids. Incorporation of a neutral lipid monoolein (MO) in excess (xMO >0.5) changes the lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes facilitating nucleic acid delivery to cells. Photoexcitation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), a photoacid, initiates an excited state proton transfer (ESPT) reaction in its protonated form (ROH*) generating the deprotonated anionic form (RO- *). The fluorescence intensity ratio (IROH* /IRO-* ) of these two forms is governed by the ESPT dynamics, and increases with increasing MO content (xMO ) in the cationic liposomes of DODAB. Transition from lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes, due to incorporation of MO (xMO ~0.7), is manifested by a significant increase of ESPT time (τPT ) and the time constant of wobbling motion (τW ) of HPTS. Thus, the lamellar organizations of DODAB or DODAB-rich (xMO 0.2) liposomes and the non-lamellar organizations of MO-rich (xMO ~0.7) liposomes are recognized by significantly different excited state dynamics of the photoacid.


Assuntos
Lipossomos , Compostos de Amônio Quaternário , Lipossomos/química , Compostos de Amônio Quaternário/química
3.
Phys Rev Lett ; 131(19): 196702, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000423

RESUMO

The V-based kagome systems AV_{3}Sb_{5} (A=Cs, Rb, and K) are unique by virtue of the intricate interplay of nontrivial electronic structure, topology, and intriguing fermiology, rendering them to be a playground of many mutually dependent exotic phases like charge-order and superconductivity. Despite numerous recent studies, the interconnection of magnetism and other complex collective phenomena in these systems has yet not arrived at any conclusion. Using first-principles tools, we demonstrate that their electronic structures, complex fermiologies and phonon dispersions are strongly influenced by the interplay of dynamic electron correlations, nontrivial spin-polarization and spin-orbit coupling. An investigation of the first-principles-derived intersite magnetic exchanges with the complementary analysis of q dependence of the electronic response functions and the electron-phonon coupling indicate that the system conforms as a frustrated spin cluster, where the occurrence of the charge-order phase is intimately related to the mechanism of electron-phonon coupling, rather than the Fermi-surface nesting.

4.
Pediatr Res ; 93(4): 827-837, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35794251

RESUMO

BACKGROUND: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. We investigated a novel spinel-structured citrate-functionalized trimanganese tetroxide nanoparticle (C-Mn3O4 NP, the nanodrug) to degrade both systemic and neural bilirubin loads. METHOD: Severe neonatal unconjugated hyperbilirubinemia (SNH) was induced in neonatal C57BL/6j mice model with phenylhydrazine (PHz) intoxication. Efficiency of the nanodrug on both in vivo bilirubin degradation and amelioration of bilirubin encephalopathy and associated neurobehavioral sequelae were evaluated. RESULTS: Single oral dose (0.25 mg kg-1 bodyweight) of the nanodrug reduced both total serum bilirubin (TSB) and unconjugated bilirubin (UCB) in SNH rodents. Significant (p < 0.0001) UCB and TSB-degradation rates were reported within 4-8 h at 1.84 ± 0.26 and 2.19 ± 0.31 mg dL-1 h-1, respectively. Neural bilirubin load was decreased by 5.6 nmol g-1 (p = 0.0002) along with improved measures of neurobehavior, neuromotor movements, learning, and memory. Histopathological studies confirm that the nanodrug prevented neural cell reduction in Purkinje and substantia nigra regions, eosinophilic neurons, spongiosis, and cell shrinkage in SNH brain parenchyma. Brain oxidative status was maintained in nanodrug-treated SNH cohort. Pharmacokinetic data corroborated the bilirubin degradation rate with plasma nanodrug concentrations. CONCLUSION: This study demonstrates the in vivo capacity of this novel nanodrug to reduce systemic and neural bilirubin load and reverse bilirubin-induced neurotoxicity. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemopreventive approach to clinical settings. IMPACT: None of the current pharmacotherapeutics treat severe neonatal hyperbilirubinemia (SNH) to prevent risks of neurotoxicity. In this preclinical study, a newly investigated nano-formulation, citrate-functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs), exhibits bilirubin reduction properties in rodents. Chemopreventive properties of this nano-formulation demonstrate an efficacious, efficient agent that appears to be safe in these early studies. Translation of C-Mn3O4 NPs to prospective preclinical and clinical trials in appropriate in vivo models should be explored as a potential novel pharmacotherapy for SNH.


Assuntos
Hiperbilirrubinemia Neonatal , Kernicterus , Compostos de Manganês , Animais , Camundongos , Bilirrubina , Quimioprevenção , Hiperbilirrubinemia Neonatal/prevenção & controle , Kernicterus/prevenção & controle , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Animais Recém-Nascidos , Modelos Animais de Doenças , Compostos de Manganês/administração & dosagem , Nanopartículas/administração & dosagem
5.
Chembiochem ; 23(9): e202200109, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35225409

RESUMO

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ∼652 s-1 . However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.


Assuntos
DNA , Micelas , Genômica , Análise Espectral , Tensoativos
6.
Inorg Chem ; 61(33): 13115-13124, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35950896

RESUMO

Toxicity induced by inorganic arsenic as AsO33- (iAsIII) is of global concern. Reliable detection of the maximum allowed contaminant level for arsenic in drinking water and in the cellular system remains a challenge for the water quality management and assessment of toxicity in the cellular milieu, respectively. A new Ir(III)-based phosphorescent molecule (AS-1; λExt = 415 nm and λEms = 600 nm, Φ = 0.3) is synthesized for the selective detection of iAsIII in an aqueous solution with a ratiometric luminescence response even in the presence of iAsV and all other common inorganic cations and anions. The relatively higher affinity of the thioimidazole ligand (HPBT) toward iAsIII led to the formation of a fluorescent molecule iAsV-HPBT (λExt = 415 nm and λEms = 466 nm, Φ = 0.28) for the reaction of iAsIII and AS-1. An improved limit of quantitation (LOQ) down to 0.2 ppb is achieved when AS-1 is used in the CTAB micellar system. Presumably, the cationic surfactants favor the localization of AS-1@CTABMicelle in mitochondria of MCF7 cells, and this is confirmed from the images of the confocal laser fluorescence scanning microscopic studies. Importantly, cell viability assay studies confirm that AS-1@CTABMicelle induces dose-dependent detoxification of iAsIII in live cells. Further, luminescence responses at 466 nm could be utilized for developing a hand-held device for the in-field application. Such a reagent that allows for ratiometric detection of iAsIII with LOQ of 2.6 nM (0.5 ppb) in water, as well as helps in visualizing its distribution in mitochondria with a detoxifying effect, is rather unique in contemporary literature.


Assuntos
Arsênio , Arsênio/toxicidade , Cetrimônio , Indicadores e Reagentes , Micelas , Mitocôndrias
7.
Phys Chem Chem Phys ; 24(10): 6176-6184, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35229087

RESUMO

The potentiality of Förster resonance energy transfer (FRET) for studying molecular interactions inside biological tissues with improved spatial (Angström) and temporal (picosecond) resolution is well established. On the other hand, the efficacy of diffuse reflectance spectroscopy (DRS) that uses optical radiation in order to determine physiological parameters including haemoglobin, and oxygen saturation is well known. Here we have made an attempt to combine diffuse reflectance spectroscopy (DRS) with picosecond-resolved FRET in order to show improvement in the exploration of molecular contacts in biological tissue models. We define the technique as ultrafast time-resolved diffuse reflectance spectroscopy (UTRDRS). The illuminated photon of the fluorophore from the surface of the tissue-mimicking layers carries the hidden information of the molecular contact. In order to investigate the validation of the Kubelka-Munk (KM) formulism for the developed UTRDRS technique in tissue phantoms, we have studied the propagation of incandescent and picosecond-laser light through several layers of cellulose membranes. While picosecond-resolved FRET in the diffuse reflected light confirms the hidden nano-contact (4.6 nm) of two different dye layers (8-anilino-1-naphthalenesulfonic acid and Nile blue), high-resolution optical microscopy on the cross-section of the layers reveals the proximity and contacts of the layers with limited spatial resolution (∼300 nm). We have also investigated two biologically relevant molecules, namely carboxyfluorescein and haemoglobin, in tissue phantom layers in order to show the efficacy of the UTRDRS technique. Overall, our studies based on UTRDRS in tissue mimicking layers may have potential applications in non-invasive biomedical diagnosis for patients suffering from skin diseases.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Luz , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Hemoglobinas , Humanos , Análise Espectral
8.
Soft Matter ; 16(12): 3050-3062, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32133476

RESUMO

Enzymes are dynamical macromolecules and their conformation can be altered via local fluctuations of side chains, large scale loop and even domain motions which are intimately linked to their function. Herein, we have addressed the role of dynamic flexibility in the catalytic activity of a thermostable enzyme almond beta-glucosidase (BGL). Optical spectroscopy and classical molecular dynamics (MD) simulation were employed to study the thermal stability, catalytic activity and dynamical flexibility of the enzyme. An enzyme assay reveals high thermal stability and optimum catalytic activity at 333 K. Polarization-gated fluorescence anisotropy measurements employing 8-anilino-1-napthelenesulfonic acid (ANS) have indicated increasing flexibility of the enzyme with an increase in temperature. A study of the atomic 3D structure of the enzyme shows the presence of four loop regions (LRs) strategically placed over the catalytic barrel as a lid. MD simulations have indicated that the flexibility of BGL increases concurrently with temperature through different fluctuating characteristics of the enzyme's LRs. Principal Component Analysis (PCA) and the Steered Molecular Dynamics (SMD) simulation manifest the gatekeeper role of the four LRs through their dynamic fluctuations surrounding the active site which controls the catalytic activity of BGL.


Assuntos
Prunus dulcis/enzimologia , beta-Glucosidase/química , Domínio Catalítico , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Prunus dulcis/química , Temperatura , Trifolium/química , Trifolium/enzimologia
9.
Phys Chem Chem Phys ; 22(28): 16314-16324, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32647839

RESUMO

A higher superconducting critical temperature and large-area epsilon-near-zero systems are two long-standing goals of the scientific community, having an explicit relationship with the correlated electrons in localized orbitals. Motivated by the recent experimental findings of the strongly correlated phenomena in nanostructures of simple Drude metallic systems, we have theoretically investigated some potential bimetallic FCC combinations having close resemblance with the experimental systems. The explored systems include the large-area interface to the embedded and doped two-dimensional (2D) combinatorial nanostructures. Using different effective single-particle first-principles approaches encompassing density functional theory (DFT), time-dependent DFT (TDDFT), phonon and DFT-coupled quantum transport, we propose some interesting correlated prospects of potential bimetallic nanostructures like Au/Ag and Pt/Pd. For the 2D doped and embedded nanostructures of these systems, the DFT-calculated non-trivial band-structures indicate the interfacial morphology-induced band localization. The calculated Fermi-surface topology of the nanostructures and the corresponding nesting behavior may be emblematic to the presence of instabilities, such as charge density waves. The optical attributes extracted from the TDDFT calculations result in near-zero behavior of both real and imaginary parts of the dynamical dielectric response in the ultra-violet to visible (UV-Vis) optical range. In addition, low-energy intra-band plasmonic oscillations, as present for individual metallic surfaces, are completely suppressed for the embedded and doped nanostructures. The TDDFT-derived electron-energy loss spectra manifest the survival of only inter-band transitions. The presence of soft phonons and dynamic instabilities is observed from the phonon-dispersion of the nanostructured systems. Quantum transport calculations on the simplest possible device made out of these bimetallic systems reveal the generation of highly transmitting pockets over the cross-sectional area for some selected device geometry. We envisage that, if scrutinized experimentally, such systems may unveil many fascinating interdisciplinary aspects of orbital chemistry, physics and optics, promoting their relevant applications in many diverse fields.

10.
Phys Chem Chem Phys ; 22(3): 1738-1746, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31898698

RESUMO

Cationic liposomes, a type of non-viral vectors, often play the important biological function of delivering nucleic acids during cell transfection. Variations in the molecular architecture of di-alkyl dihydroxy ethyl ammonium chloride-based cationic lipids involving hydrophobic tails have been found to influence their biological function in terms of cell transfection efficiency. For example, liposomes based on a cationic lipid (Lip1814) with asymmetry in the hydrophobic chains were found to display higher transfection efficacy in cultured mammalian cell lines than those comprising of symmetric Lip1818 or asymmetric Lip1810. The effect of variations in the molecular architecture of the cationic lipids on the biological activity of liposomes has been explored here via the photophysical studies of 8-anilino-1-naphthalenesulphonate (ANS) and Nile Red (NR) in three cationic liposomes, namely Lip1810, Lip1814 and Lip1818. Time-resolved fluorescence of ANS revealed reduced hydration at the lipid-water interface and enhanced relaxation dynamics of surface water (lipid headgroup bound water molecules) in Lip1810- and Lip1814-based liposomes in the presence of cholesterol. As the probe ANS failed to be incorporated into the lipid-water interface of Lip1818 due to the significantly high rigidity of these liposomes, no information concerning the extent of hydration of the lipid-water interface or the interfacial water dynamics could be obtained. Time-resolved polarization-gated anisotropy measurements of NR in the presence of cholesterol revealed the rigidity of the cationic liposomes to be increasing in the order of Lip1810 < Lip1814 < Lip1818. In the presence of cholesterol, moderately higher rigidity, reduced membrane hydration and enhanced relaxation dynamics of the interfacial water molecules gave rise to the superior cell transfection efficacy of Lip1814-based cationic liposomes than those of the highly flexible Lip1810 or the highly rigid Lip1818.


Assuntos
Lipídeos/química , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Transfecção
11.
J Dairy Sci ; 103(2): 1366-1376, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785872

RESUMO

Riboflavin (RF), commonly known as vitamin B2, is an essential ingredient in any milk variety of animal origin. The photophysics of the molecule RF, including its interaction with biological macromolecules, are well studied. Here, we have investigated the possibility of the molecule as a potential biomarker of milk quality. We also found omnipresence of this molecule in milk of plant origin (soy milk). Spectroscopic studies on various animal and plant milks of different commercial origins confirmed the potential of RF for use in identifying the quality of the milk varieties. Our developed strategy involved identification or spectroscopic signature of RF by measuring optical density at 365 nm (quality factor 1) and fluorescence intensity around 520 nm (excitation at 365 nm; quality factor 2) on a very small amount of whole milk (10 µL). We also developed a prototype device called Mil-Q-Way to be used in the real field. The required interfacing software in the LabView platform was also developed. A 2-parameter plot (quality factor 1 on the x-axis and quality factor 2 on the y-axis) called the Mil-Q-Way plot clearly differentiates the quality of milks of different commercial origins. The low-cost device based on simple spectroscopy was shown to screen for the presence of harmful adulterants in drinkable milk.


Assuntos
Biomarcadores/análise , Leite/normas , Riboflavina/análise , Leite de Soja/normas , Análise Espectral , Animais , Fluorescência , Leite/química , Software , Leite de Soja/química , Análise Espectral/instrumentação , Análise Espectral/métodos
12.
Chemistry ; 25(41): 9728-9736, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31062438

RESUMO

Enzyme-mediated catalysis is attributed to enzyme-substrate interactions, with models such as "induced fit" and "conformational selection" emphasizing the role of protein conformational transitions. The dynamic nature of the protein structure, thus, plays a crucial role in molecular recognition and substrate binding. As large-scale protein motions are coupled to water motions, hydration dynamics play a key role in protein dynamics, and hence, in enzyme catalysis. Here, microfluidic techniques and time-dependent fluorescence Stokes shift (TDFSS) measurements are employed to elucidate the role of nanoscopic water dynamics in the interaction of an enzyme, α-Chymotrypsin (CHT), with a substrate, Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC) in the cationic reverse micelles of benzylhexadecyldimethylammonium chloride (BHDC/benzene) and anionic reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT/benzene). The kinetic pathways unraveled from the microfluidic setup are consistent with the "conformational selection" fit for the interaction of CHT with AMC in the cationic reverse micelles, whereas an "induced fit" mechanism is indicated for the anionic reverse micelles. In the cationic reverse micelles of BHDC, faster hydration dynamics (≈550 ps) aid the pathway of "conformational selection", whereas in the anionic reverse micelles of AOT, the significantly slower dynamics of hydration (≈1600 ps) facilitate an "induced fit" mechanism for the formation of the final enzyme-substrate complex. The role of water dynamics in dictating the mechanism of enzyme-substrate interaction becomes further manifest in the neutral reverse micelles of Brij-30 and Triton X-100. In the former, the faster water dynamics aid the "conformational selection" pathway, whereas the significantly slower dynamics of water molecules in the latter are conducive to the "induced fit" mechanism in the enzyme-substrate interaction. Thus, nanoscopic water dynamics act as a switch in modulating the pathway of recognition of an enzyme (CHT) by the substrate (AMC) in reverse micelles.


Assuntos
Quimotripsina/metabolismo , Cumarínicos/metabolismo , Dispositivos Lab-On-A-Chip , Micelas , Oligopeptídeos/metabolismo , Água/metabolismo , Ânions/metabolismo , Cátions/metabolismo , Desenho de Equipamento , Fluorescência , Cinética , Especificidade por Substrato , Tensoativos/metabolismo
13.
Langmuir ; 35(13): 4682-4692, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30807692

RESUMO

The maintenance of cell membrane fluidity is of critical importance for various cellular functions. At lower temperatures when membrane fluidity decreases, plants and cyanobacteria react by introducing unsaturation in the lipids, so that the membranes return to a more fluidic state. To probe how introduction of unsaturation leads to reduced membrane fluidity, a model cationic lipid dioctadecyldimethylammonium bromide (DODAB) has been chosen, and the effects of an unsaturated lipid monoolein (MO) on the structural dynamics and phase behavior of DODAB have been monitored by quasielastic neutron scattering and time-resolved fluorescence measurements. In the coagel phase, fluidity of the lipid bilayer increases significantly in the presence of MO relative to pure DODAB vesicles and becomes manifest in significantly enhanced dynamics of the constituent lipids along with faster hydration and orientational relaxation dynamics of a fluorophore. On the contrary, MO restricts both lateral and internal motions of the lipid molecules in the fluid phase (>330 K), which is consistent with relatively slow hydration and orientational relaxation dynamics of the fluorophore embedded in the mixed lipid bilayer. The present study illustrates how incorporation of an unsaturated lipid at lower temperatures (below the phase transition) assists the model lipid (DODAB) in regulating fluidity via enhancement of dynamics of the constituent lipids.


Assuntos
Cátions/química , Glicerídeos/química , Bicamadas Lipídicas/química , Varredura Diferencial de Calorimetria , Compostos de Amônio Quaternário/química
14.
Phys Chem Chem Phys ; 21(20): 10667-10676, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086863

RESUMO

Lead sulfide (PbS) colloidal quantum dots (QDs) are emerging materials for fundamental studies because of their potential application in near infrared (NIR) light harvesting technologies. However, inefficient electron separation, facile charge recombination and defect state trapping of photoexcited carriers are reported as limitations of the PbS QDs to achieve efficient energy conversion. In the present study, we have synthesized a triohybrid by assembling a semiconductor titanium dioxide (TiO2), an organic oxidizing molecule phenothiazine (PTZ) and PbS QDs. The triohybrid along with PbS_TiO2 and PbS_PTZ hybrids has been characterized and the attachment of different components is verified by spectroscopic and microscopic techniques. The interfacial dynamics of the photoexcited carriers in the PbS_TiO2 and PbS_PTZ hybrids have been investigated separately using steady state and time resolved photoluminescence (TRPL) measurements. The photoinduced electron transfer (PET) from the PbS QD to the conduction band (CB) of TiO2 and photoinduced hole transfer (PHT) from the valence band (VB) of the QD to the highest occupied molecular orbital (HOMO) of PTZ have been observed and correlated mechanistically to the energy level alignments obtained from cyclic voltammetric (CV) analysis. The PTZ molecule is also found to act as a surface defect passivator of the PbS QD. Finally, simultaneous exciton dissociation and reduced back recombination phenomena have been correlated with a higher reactive oxygen species (ROS) generation activity of the triohybrid than the other two, under IR light irradiation. Thus, a detailed investigation of carrier dynamics and the mechanism of higher NIR light activity for a novel nanohybrid is explored and analyzed which could be beneficial for NIR catalysis or antibacterial activities.

15.
J Phys Chem A ; 123(35): 7550-7557, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402654

RESUMO

Near-infrared (NIR) light harvesting has enormous importance for different potential applications in the modern era of research. Some NIR cyanine dyes such as IR820 have achieved great success in energy harvesting and cancer therapy. However, their action is limited for low photostability, considerable thermal degradation, short circulation times, and nonspecific biodistribution. Our present study is an attempt to overcome such limitations by attaching a model cyanine dye IR820 with ZnO nanoparticles. We prepared an IR820-ZnO nanohybrid and characterized it using microscopic and optical spectroscopic tools. Thermogravimetric analysis depicted greater thermal stability of the IR820-ZnO nanohybrid compared to free dye. We explored the enhancement in the photostability of IR820 upon nanohybrid formation. We detected generation of photoinduced reactive oxygen species (ROS) such as superoxide, singlet oxygen, and so forth using appropriate molecular probes. The formation of IR820-ZnO nanohybrid reduced production of photoinduced singlet oxygen. However, it revealed an alternative trend in overall ROS formation (increases total ROS) under red light illumination. To correlate the enhanced photostability of IR820 on the ZnO surface, we explored excited-state dynamical processes at the interface in nanohybrids. We illustrated the photoinduced excited-state electron-transfer process from the lowest unoccupied molecular orbital of IR820 to the conduction band of ZnO. This photoelectron-transfer process enhances the production of ROS and decreases the formation of singlet oxygen that altogether leads to improvement in photostability and overall activity. A quencher of singlet oxygen sodium azide (NaN3) was used to further confirm the direct association of singlet oxygen generation with the photostability issue of IR820. Also, ZnO is able to deliver the dye selectively in acidic environment, which suggests its diseased site-specific targeted activity. Our results provide promising improvement for potential use of IR820 through formation of a nanohybrid that could be translated for other NIR cyanine dyes.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Nanopartículas/química , Termodinâmica , Carbocianinas/síntese química , Corantes Fluorescentes/síntese química , Raios Infravermelhos , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Óxido de Zinco/química
16.
Proc Natl Acad Sci U S A ; 113(41): 11513-11518, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688756

RESUMO

The walleye (Sander vitreus) is a golden yellow fish that inhabits the Northern American lakes. The recent sightings of the blue walleye and the correlation of its sighting to possible increased UV radiation have been proposed earlier. The underlying molecular basis of its adaptation to increased UV radiation is the presence of a protein (Sandercyanin)-ligand complex in the mucus of walleyes. Degradation of heme by UV radiation results in the formation of Biliverdin IXα (BLA), the chromophore bound to Sandercyanin. We show that Sandercyanin is a monomeric protein that forms stable homotetramers on addition of BLA to the protein. A structure of the Sandercyanin-BLA complex, purified from the fish mucus, reveals a glycosylated protein with a lipocalin fold. This protein-ligand complex absorbs light in the UV region (λmax of 375 nm) and upon excitation at this wavelength emits in the red region (λmax of 675 nm). Unlike all other known biliverdin-bound fluorescent proteins, the chromophore is noncovalently bound to the protein. We provide here a molecular rationale for the observed spectral properties of Sandercyanin.


Assuntos
Proteínas/química , Biliverdina/química , Cristalografia por Raios X , Fluorescência , Modelos Moleculares , Proteínas Recombinantes/química
17.
Chemphyschem ; 19(20): 2709-2716, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30030893

RESUMO

It is well accepted in contemporary biology that an ∼30 Šthick lipid bilayer film around living cells is a matter of life and death as the film typically delimits the environments that serve as a crucial margin. The dynamic organization of lipid molecules both across the lipid bilayer and in the lateral dimension are known to be crucial for cellular transport and molecular recognition by important biological macromolecules. Here, we study dilute (20 mM) Dioctadecyldimethylammonium bromide (DODAB) vesicles at different temperatures in aqueous dispersion with well-defined phases namely liquid crystalline, gel and subgel. The spectroscopic studies on two fluorescent probes 8-anilino-1-naphthalene sulfonic acid ammonium salt (ANS) and Coumarin 500 (C500), former in the head group region of the lipid-water interface and later located deeper in the lipid bilayer follow dynamics (solvation and fluidity) of their local environments in the vesicles. Binding of an anti-tuberculosis drug rifampicin has also been studied employing Förster resonance energy transfer (FRET) technique. The molecular insight concerning the effect of dynamical organization of the lipid molecules on the local dynamics of aqueous environments in different phases leading to molecular recognition becomes evident in our study.


Assuntos
Bicamadas Lipídicas/química , Transição de Fase , Compostos de Amônio Quaternário/química , Solventes/química , Naftalenossulfonato de Anilina/química , Antituberculosos/química , Organismos Aquáticos , Cumarínicos/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Rifampina/química , Temperatura
18.
Phys Chem Chem Phys ; 20(15): 10418-10429, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29611559

RESUMO

Co-sensitization to achieve a broad absorption window is a widely accepted technique in light harvesting nanohybrid synthesis. Protoporphyrin (PPIX) and squaraine (SQ2) are two organic sensitizers absorbing in the visible and NIR wavelength regions of the solar spectrum, respectively. In the present study, we have sensitized zinc oxide (ZnO) nanoparticles using PPIX and SQ2 simultaneously for their potential use in broad-band solar light harvesting in photocatalysis. Förster resonance energy transfer (FRET) from PPIX to SQ2 in close proximity to the ZnO surface has been found to enhance visible light photocatalysis. In order to confirm the effect of intermolecular FRET in photocatalysis, the excited state lifetime of the energy donor dye PPIX has been modulated by inserting d10 (ZnII) and d7 (CoII) metal ions in the central position of the dye (PP(Zn) and PP(Co)). In the case of PP(Co)-SQ2, extensive photo-induced ligand to metal charge transfer counteracts the FRET efficiency while efficient FRET has been observed for the PP(Zn)-SQ2 pair. This observation has been justified by the comparison of the visible light photocatalysis of the respective nanohybrids with several control studies. We have also investigated the NIR photocatalysis of the co-sensitized nanohybrids which reveals that reduced aggregation of SQ2 due to co-sensitization of PPIX increases the NIR photocatalysis. However, core-metalation of PPIX reduces the NIR photocatalytic efficacy, most probably due to excited state charge transfer from SQ2 to the metal centre of PP(Co)/PP(Zn) through the conduction band of the host ZnO nanoparticles.

19.
Phys Chem Chem Phys ; 19(3): 2503-2513, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28058420

RESUMO

The immense pharmacological relevance of the herbal medicine curcumin including anti-cancer and anti-Alzheimer effects, suggests it to be a superior alternative to synthesised drugs. The diverse functionalities with minimal side effects intensify the use of curcumin not only as a dietary supplement but also as a therapeutic agent. Besides all this effectiveness, some recent literature reported the presence of deleterious heavy metal contaminants from various sources in curcumin leading to potential health hazards. In this regard, we attempt to fabricate ZnO based nanoprobes to detect metal conjugated curcumin. We have synthesized and structurally characterized the ZnO nanorods (NR). Three samples namely curcumin (pure), Zn-curcumin (non-toxic metal attached to curcumin) and Hg-curcumin (toxic heavy metal attached to curcumin) were prepared for consideration. The samples were electrochemically deposited onto ZnO surfaces and the attachment was confirmed by cyclic voltammetry experiments. Moreover, to confirm a molecular level interaction picosecond-resolved PL-quenching of ZnO NR due to Förster Resonance Energy Transfer (FRET) from donor ZnO NR to the acceptor curcumin moieties was employed. The attachment proximity of ZnO NR and curcumin moieties depends on the size of metals. First principles analysis suggests a variance of attachment sites and heavy metal Hg conjugated curcumin binds through a peripheral hydroxy group to NR. We fabricated a facile photovoltaic device consisting of ZnO NR as the working electrode with Pt counter electrode and iodide-triiodide as the electrolyte. The trend in photocurrent under visible light illumination suggests an enhancement in the case of heavy metal ions due to long range interaction and greater accumulation of charge at the active electrode. Our results provide a detailed physical insight into interfacial processes that are crucial for detecting heavy-metal attached phytomedicines and are thus expected to find vast application as sensors for the detection of selective metal contaminants.


Assuntos
Metais Pesados/análise , Nanotubos/química , Compostos Fitoquímicos/química , Óxido de Zinco/química , Simulação por Computador , Curcumina/química , Técnicas Eletroquímicas , Eletrodos , Transferência Ressonante de Energia de Fluorescência , Luz , Metais Pesados/química , Análise Espectral
20.
Phys Chem Chem Phys ; 19(19): 12237-12245, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28451669

RESUMO

Relaxation dynamics at the surface of biologically important macromolecules is important taking into account their functionality in molecular recognition. Over the years it has been shown that the solvation dynamics of a fluorescent probe at biomolecular surfaces and interfaces account for the relaxation dynamics of polar residues and associated water molecules. However, the sensitivity of the dynamics depends largely on the localization and exposure of the probe. For noncovalent fluorescent probes, localization at the region of interest in addition to surface exposure is an added challenge compared to the covalently attached probes at the biological interfaces. Here we have used a synthesized donor-acceptor type dipolar fluorophore, 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN), for the investigation of the solvation dynamics of a model protein-surfactant interface. A significant structural rearrangement of a model histone protein (H1) upon interaction with anionic surfactant sodium dodecyl sulphate (SDS) as revealed from the circular dichroism (CD) studies is nicely corroborated in the solvation dynamics of the probe at the interface. The polarization gated fluorescence anisotropy of the probe compared to that at the SDS micellar surface clearly reveals the localization of the probe at the protein-surfactant interface. We have also compared the sensitivity of ACYMAN with other solvation probes including coumarin 500 (C500) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM). In comparison to ACYMAN, both C500 and DCM fail to probe the interfacial solvation dynamics of a model protein-surfactant interface. While C500 is found to be delocalized from the protein-surfactant interface, DCM becomes destabilized upon the formation of the interface (protein-surfactant complex). The timescales obtained from this novel probe have also been compared with other femtosecond resolved studies and molecular dynamics simulations.


Assuntos
Corantes Fluorescentes/química , Proteínas/química , Corantes Fluorescentes/metabolismo , Histonas/química , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes , Dodecilsulfato de Sódio/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA