Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Anal Chem ; 96(9): 3780-3786, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38407028

RESUMO

The confinement of liquid crystals (LCs) in spherical microdroplets results in exotic internal configurations and topological defects in response to physical and chemical stimuli. Recent exploration into the placement of colloids on the surface of LC microdroplets has led to the design of a new class of functional materials with patterned surface properties. It is established that the placement of a colloid on a LC droplet surface can pin the topological defect at the interface, thereby restricting changes in the LC configuration. Herein, we build upon the handful of reports published to provide a fundamental understanding of the colloid positioning in response to external stimuli. Using polystyrene (PS) colloids, we explored the dynamics of particle self-assembly in response to an interfacial enzymatic breakdown of poly-l-lysine by trypsin. We found that for a significant population of droplets, the positioning of the colloid is unaffected by the changes in the internal ordering of LC. Inspired by the new observations, we delved deeper to understand the role of interfacial stabilizers in modulating the preferential alignment of LC and the placement of colloidal microparticles. We also demonstrated that for a certain population of droplets, the positioning of the colloids remains unperturbed in response to multistep reversible adsorption of interfacial amphiphiles. Our findings reveal interesting possibilities of correlating the stimuli-responsive switching of internal configurations of LC with colloid placement on the particle-decorated LC droplets.

2.
Small ; 20(23): e2308983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332439

RESUMO

Discotic liquid crystals (DLCs) are widely acknowledged as a class of organic semiconductors that can harmonize charge carrier mobility and device processability through supramolecular self-assembly. In spite of circumventing such a major challenge in fabricating low-cost charge transport layers, DLC-based hole transport layers (HTLs) have remained elusive in modern organo-electronics. In this work, a minimalistic design strategy is envisioned to effectuate a cyanovinylene-integrated pyrene-based discotic liquid crystal (PY-DLC) with a room-temperature columnar hexagonal mesophase and narrow bandgap for efficient semiconducting behavior. Adequately combined photophysical, electrochemical, and theoretical studies investigate the structure-property relations, logically correlating them with efficient hole transport. With a low reorganization energy of 0.2 eV, PY-DLC exhibits superior charge extraction ability from the contact electrodes at low values of applied voltage, achieving an electrical conductivity of 3.22 × 10-4 S m-1, the highest reported value for any pristine DLC film in a vertical charge transport device. The columnar self-assembly, in conjunction with solution-processable self-healed films, results in commendably elevated values of hole mobility (≈10-3 cm2 V-1s-1). This study provides an unprecedented constructive outlook toward the development of DLC semiconductors as practical HTLs in organic electronics.

3.
Chemistry ; 30(45): e202401836, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818932

RESUMO

We report azopyrazole photoswitches decorated with variable N-alkyl and alkoxy chains (for hydrophobic interactions) and phenyl substituents on the pyrazoles (enabling π-π stacking), showing efficient bidirectional photoswitching and reversible light-induced phase transition (LIPT). Extensive spectroscopic, microscopic, and diffraction studies and computations confirmed the manifestation of molecular-level interactions and photoisomerization into macroscopic changes leading to the LIPT phenomena. Using differential scanning calorimetric (DSC) studies, the energetics associated with those accompanying processes were estimated. The long half-lives of Z isomers, high energy contents for isomerization and phase transitions, and the stability of phases over an extended temperature range (-60 to 80 °C) make them excellent candidates for energy storage and release applications. Remarkably, the difference in the solubility of the distinct phases in one of the derivatives allowed us to utilize it as a photoresist in photolithography applications on diverse substrates.

4.
Soft Matter ; 20(35): 7012-7020, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39171622

RESUMO

Non-symmetrical cholesterol-based dimers have emerged as crucial materials in the field of liquid crystal research, owing to their remarkable ability to stabilize various exotic mesophases, including the blue phases (BPIII, BPII, BPI), cholesteric nematic (N*) phase, smectic blue phase (SmBP), twist grain boundary (TGB) phase, smectic A/smectic A* (SmA/SmA*) phase, and smectic C/smectic C* (SmC/SmC*) phase. These mesophases have garnered considerable attention due to their diverse applications in spatial light modulation, chiro-optical devices, optical switching, thermochromic materials, and more. In this study, we present the synthesis and comprehensive characterization of a series of non-symmetrical cholesterol-based bent-shaped dimers (1/12, 1/14, 1/16) in which the cholesterol unit is intricately linked to an aromatic mesogenic core through a flexible spacer. These novel materials exhibit the intriguing ability to stabilize a variety of mesophases, including the N*, TGBA, SmA, and SmC* phases. The chiro-optical properties of the helical SmC* phase have been meticulously investigated through temperature-dependent chiro-optical measurements, shedding light on their potential for advanced optoelectronic applications. Additionally, we have conducted a thorough examination of the physical characteristics of these cholesterol-based dimers, including static permittivity measurements, dielectric spectroscopy, and electro-optical performance analysis. Remarkably, two homologues (1/14, 1/16) exhibit negative dielectric anisotropy, a crucial parameter for liquid crystal devices. Furthermore, our investigation reveals that these materials exhibit ferroelectric behaviour in the SmC* phase, with compounds 1/14 and 1/16 demonstrating substantial spontaneous polarization (PS) values of approximately 132 nC cm-2 and 149 nC cm-2, respectively. These findings underscore the potential of non-symmetrical cholesterol-based dimers as versatile components for the development of innovative electro-optical devices.

5.
Analyst ; 149(14): 3828-3838, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855814

RESUMO

Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Lagos , Limite de Detecção , Cristais Líquidos , Norfloxacino , Norfloxacino/análise , Norfloxacino/química , Aptâmeros de Nucleotídeos/química , Cristais Líquidos/química , Lagos/análise , Lagos/química , Técnicas Biossensoriais/métodos , Solo/química , Antibacterianos/análise , Antibacterianos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Cetrimônio/química
6.
Langmuir ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36634050

RESUMO

After revolutionizing the field of electro-optic displays, liquid crystals (LCs) are emerging as functional soft materials with wide-ranging biomedical implications. Integrating smart sensor designs with label-free imaging presents exciting opportunities in diagnostics. In this Perspective, we present an elegant collage of the key findings that demonstrate the utility of LC biosensors in diagnosing a disease or infection in clinical samples, cellular microenvironments, or bodily fluids. We emphasize the currently prevalent diagnostic techniques and the advances made using LCs in achieving greater sensitivity, a simplified strategy, multiplexed detection, and so on. We collate the landmark contributions in translational research in LC-based diagnostics. We believe that developing LC-based biosensors presents a new therapeutic window in point-of-care diagnostics.

7.
Soft Matter ; 19(8): 1513-1522, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36727296

RESUMO

Understanding and control of molecular alignment at the nanoscale in self-assembled supramolecular structures is a prerequisite for the subsequent exploitation of molecules in functional devices. Here, we have clarified the surface-pressure induced molecular nanoarchitectures in a monolayer of a heterocoronene-based discotic liquid crystal (DLC) at air-water and air-solid interfaces using surface manometry, real-time Brewster angle microscopy, and real-space atomic force microscopy (AFM). Chloroform-spread DLCs at a concentration of ∼108 µM exhibit floating domains at the air-water interface comprising small aggregates of edge-on stacked molecules interacting via peripheral alkyl chains. Detailed analysis of surface manometry and relaxation measurements reveal that, upon compression, these domains coalesce to form a coherent monolayer which then undergoes irreversible structural transformations via mechanisms such as monolayer loss due to desorption and localized nucleation of defects. AFM images of the films transferred on a hydrophilic substrate reveal that with increasing surface-pressure, the nanoscale structure of the monolayer transforms from randomly oriented nanowires to tightly-packed nanowire domains, and finally to fragmented wire segments which diffuse locally above the film. These results provide a facile method for the preparation of compact, two-dimensional films of ambipolar DLC molecules with a tunable nanoarchitecture which will be crucial for their applications in nanoscale electronic devices.

8.
Soft Matter ; 18(28): 5293-5301, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35790122

RESUMO

Pore-forming toxins (PFTs) produced by pathogenic bacteria serve as prominent virulence factors with potent cell-killing activity. Most of the ß-barrel PFTs form transmembrane oligomeric pores in the membrane lipid bilayer in the presence of cholesterol. The pore-formation mechanisms of the PFTs highlight well-orchestrated regulated events in the membrane environment, which involve dramatic changes in the protein structure and organization. Also, concerted crosstalk between protein and membrane lipid components appears to play crucial roles in the process. Membrane-damaging lesions formed by the pore assembly of the PFTs would also be expected to impose drastic alterations in the membrane organization, details of which remain obscure in most of the cases. Prior reports have established that aqueous interfaces of liquid crystals (LCs) offer promise as responsive interfaces for biomolecular events (at physiologically relevant concentrations), which can be visualized as optical signals. Inspired by this, herein, we sought to understand the lipid membrane interactions of a ß-barrel PFT i.e., Vibrio cholerae cytolysin (VCC), using LC-aqueous interfaces. Our results show the formation of dendritic patterns upon the addition of VCC to the lipid embedded with cholesterol over the LC film. In contrast, we did not observe any LC reorientation upon the addition of VCC to the lipid-laden LC-aqueous interface in the absence of cholesterol. An array of techniques such as polarizing optical microscopy (POM), atomic force microscopy (AFM), and fluorescence measurements were utilized to decipher the LC response to the lipid interactions of VCC occurring at these interfaces. Altogether, the results obtained from our study provide a novel platform to explore the mechanistic aspects of the protein-membrane interactions, in the process of membrane pore-formation by the membrane-damaging PFTs.


Assuntos
Cristais Líquidos , Vibrio cholerae , Membrana Celular/química , Colesterol , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Bicamadas Lipídicas/química , Vibrio cholerae/química , Vibrio cholerae/metabolismo , Água/metabolismo
9.
Soft Matter ; 18(46): 8850-8855, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36374203

RESUMO

Herein, we reveal a homologous series of liquid crystals involving perylene tetraesters as the core connected to the four trialkoxyphenyl units at the periphery using the triazole moiety as the linker. A thorough analysis using differential scanning calorimetry, polarized optical microscopy, and small- and wide-angle X-ray scattering studies confirm that all the mesogens 1a-c hold a stable enantiotropic columnar mesophase. Suitable molecular orbital levels and excellent material photophysical and thermal properties encouraged the study of their electroluminescent properties. Due to this, a well designed solution-processable organic light emitting diode device structure is configured as ITO (125 nm)/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) (35 nm)/host: x wt% emitter (x = 0.5, 1.0, 3.0, 5.0) (20 nm)/2,2'2''-(1,3,5-benzinetriyl)tris(1-phenyl-1-H-benzimidazole) (TPBi) (40 nm)/lithium fluoride (LiF) (1 nm)/aluminium (Al) (200 nm) using compounds 1a-c as emitters. 4,4',4''-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA) and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) were chosen as two different host materials. The current density-voltage-luminance and current efficacy-luminance-power efficacy plots suggest that m-MTDATA is a better host than CBP. Amongst, device based on 1 wt% emitter 1c doped in the m-MTDATA host matrix displayed the best performance, with a maximum power efficacy of 17.2 lm W-1, current efficacy of 18.5 cd A-1, and external quantum efficiency of 6.3%.

10.
Soft Matter ; 18(22): 4214-4219, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34935025

RESUMO

Development of materials that serve as efficient blue emitters in solution-processable OLEDs is challenging. In this study, we report three derivatives of C3-symmetric 1,3,5-tris(thien-2-yl)benzene-based highly luminescent room temperature columnar discotic liquid crystals (DLCs) suitable as solid-state emitters in OLED devices. When employed in solution-processed OLEDs, one of the derivatives having the highest photoluminescence quantum yield exhibited a maximum EQE of 4.7% and CIE chromaticity of (0.16, 0.05) corresponding to the ultra deep-blue emission. The finding is sufficiently significant in the field of DLC-based deep blue emitters.

11.
Soft Matter ; 18(4): 922, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35018961

RESUMO

Correction for 'Luminescent columnar discotics as highly efficient emitters in pure deep-blue OLEDs with an external quantum efficiency of 4.7%' by Joydip De et al., Soft Matter, 2022, DOI: 10.1039/d1sm01558c.

12.
Nano Lett ; 21(11): 4546-4553, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048245

RESUMO

Aqueous interfaces of liquid crystals (LCs) are widely explored in the design of functional interfaces to recapitulate the key aspects of biomolecular interactions in cellular milieu. Herein, using aqueous LC dispersions, we explore the interactions between mitochondrial cardiolipin and membrane-associated cytochrome c which play a pivotal role in the apoptotic signaling cascade. Conventional techniques used to decipher LC ordering at the droplet interface fail to give information about the interactions at a molecular level. Besides, owing to the complexity of LC systems and multiple determinants driving the LC reorientation, accurate analysis of the underlying mechanism responsible for the LC ordering transition remains challenging. Using a combination of atomistic simulations and microscopic and spectroscopic readouts, for the first time, we unveil the lipid-protein interactions that drive the reorientation at the LC droplet interface. The insights from our work are fundamental to the design of these interfaces for a spectrum of interfacial applications.


Assuntos
Cristais Líquidos , Lipídeos , Propriedades de Superfície , Água
13.
J Org Chem ; 86(10): 7256-7262, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33955757

RESUMO

A unique strategy for the attainment of a discotic nematic (ND) mesophase is reported consisting of a central benzene core to which are attached two 4-alkylphenyl and two 4-pentylbiphenyl moieties diagonally via alkynyl linkers. The rotational nature and incompatibility of unequal phenylethynyl units led to the disruption of π-π interactions within cores that aids to the realization of ND phase and favors high solid-state emission. When used in OLEDs, compounds act as an efficient solid-state pure deep-blue emitter with Commission Internationale de L'Eclairage (CIEx,y) coordinates of (0.16, 0.07).

14.
Analyst ; 146(23): 7152-7159, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34734590

RESUMO

Interfaces formed between a lipid decorated liquid crystal (LC) film and an aqueous phase can mimic the bimolecular membrane where interfacially occurring biological phenomena (e.g., lipid-protein interactions, protein adsorption) can be visually monitored by observing the surface-sensitive orientations of LCs. The ordering behavior of LCs at different phospholipid-based LC interfaces (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and lysophosphatidic acid (LPA)) were investigated to determine the sensing of an important cytoplasmic protein (juxtamembrane of epidermal growth factor receptor (JM-EGFR)). At both DLPC and LPA decorated interfaces, the LC adopts homeotropic ordering, causing a dark optical appearance under crossed polarizers. Interestingly, upon the introduction of JM-EGFR to these LC-aqueous interfaces, the homeotropic orientation of the LC changed to planar (bright optical appearance), suggesting the potential of the designed system for JM-EGFR sensing. The use of different lipid decorated LC-aqueous interfaces results in the emergence of distinct optical patterns. For example, at a DLPC laden interface, elongated bright domains are observed, whereas a uniform bright texture is observed on an LPA laden interface. The DLPC decorated LC-aqueous interface is found to be highly selective for the sensing of JM-EGFR with a detection limit in the nanomolar concentration region (∼ 50 nM). When compared to spectroscopic and other conventional techniques, the LC-based design is simpler, and it allows the simple and label-free optical sensing of JM-EGFR at fluidic interfaces.


Assuntos
Cristais Líquidos , Adsorção , Fosfolipídeos , Água
15.
Chemistry ; 26(26): 5859-5871, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083772

RESUMO

Recently, an unprecedented observation of polar order, thermochromic behavior, and exotic mesophases in new chiral, bent-shaped systems with a -CH3 moiety placed at the transverse position of the central core was reported. Herein, a homologous series of compounds with even-numbered carbon chains from n=4 to 18 were synthesized, in which -Cl was substituted for -CH3 at the kink position and a drastic modification in the phase structure of the bent-shaped molecule was observed. An unusual stabilization of the cubic blue phase (BP) over a wide range of 16.4 °C has been witnessed. Two homologues in this series (1-12 and 1-14) exhibit an interesting phase sequence consisting of BPI/II, chiral nematic, twist grain boundary, smectic A, and smectic X (SmX) phases. The higher homologues (1-16 and 1-18) stabilize the SmX phase enantiotropically over the entire temperature range. Crystal structure analysis confirmed the bent molecular architecture, with a bent angle of 148°, and revealed the presence of two different molecular conformations in an asymmetric unit of compound 1-4. A DFT study corroborated that the -Cl moiety at the central core of the molecule led to an increase in the dipole moment along the transverse direction, which, in turn, facilitated the unusual stabilization of frustrated structures. Crystal polymorphism has been evidenced in three homologues (1-10, 1-12, and 1-14) of the series. On the application of mechanical pressure through grinding, compound 1-10 transformed from a bright yellow crystalline solid to a dark orange-green amorphous solid, which reversed upon dropwise addition of dichloromethane, indicating reversible mechanochromism in this class of compounds. In addition, excellent thermochromic behavior has been observed for compound 1-10 with a controlled temperature-color combination.

16.
Soft Matter ; 16(32): 7556-7561, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706008

RESUMO

Many bent-core nematic liquid crystals exhibit unusual physical properties due to the presence of smectic clusters, known as "cybotactic" clusters, in the nematic phase. Here, we investigate the effect of these clusters on the complex shear modulus (G*(ω)) of two asymmetric bent-core liquid crystals using a microrheological technique. The compound with a shorter hydrocarbon chain (8OCH3) exhibits only a nematic (N) phase whereas the compound with a longer chain (16OCH3) exhibits both nematic (N) and smectic-A (SmA) phases. The rheological results are correlated with the measurements of curvature elastic constants. Our results show that the directional shear modulus of 16OCH3, just above the SmA to N phase transition temperature, is strikingly different than that of 8OCH3, owing to the smectic clusters. An approximate size of the clusters is estimated using a simple model. Therefore, microrheological studies on bent-core nematic liquid crystals are very useful in extracting information about underlying smectic clusters.

17.
J Am Chem Soc ; 141(47): 18799-18805, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31682432

RESUMO

Heterocoronene, a new redox-active core fragment, is utilized for the synthesis of room-temperature columnar discotic liquid crystals (DLCs). Three wedge-shaped side chains having different lengths of alkyl tails are introduced at the periphery of the heterocoronene core to prepare three kinds of discotic molecules, 1 (R = C10H21), 2 (R = C12H25), and 3 (R = C14H29). X-ray diffraction (XRD) analysis confirmed the packing variation in the columnar lattices regulated by alkyl chains of discrete length and steric bulk. When used in space charge limited current devices, compound 1 exhibits a high hole mobility value of 8.84 cm2/V s at ambient temperature, whereas compounds 2 and 3 show efficient ambipolar charge transport behavior with maximum hole (µh) and electron (µe) mobilities of 0.70 and 3.59 cm2/V s, respectively, for compound 3. The mobility values (µh = 8.84 cm2/V s for 1 and µe = 3.59 cm2/V s for 3) are remarkable and the highest ever disclosed for any DLC-based organic semiconductor, promising to deliver a good balance between mobility and processability in devices. The grazing incidence small- and wide-angle X-ray scattering experiments are employed to quantify the extent of alignment in the film state, which correlates with the observed trend of mobility values.

18.
Langmuir ; 35(24): 7816-7823, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117720

RESUMO

We report a new method for label-free, sensitive, and facile detection of lead(II) ions (Pb2+) based on an aptamer-target binding event, which is recognized by orientations of liquid crystals (LCs) at aqueous interfaces. The LC film suspended in the aqueous phase demonstrated a homeotropic orientation in contact with a cationic surfactant cetyltrimethylammonium bromide (CTAB) due to self-assembly of CTAB molecules at the aqueous-LC interface. The ordering of LC subsequently changed to planar in the presence of the spinach RNA aptamer (SRNA) due to interactions between CTAB and SRNA. In the presence of the Pb2+ ion, the ordering of LC changed to homeotropic caused by reorganization of CTAB at the LC-aqueous interface. This is due to formation of more stable quadruplex structures of SRNA with Pb2+ ions in comparison to the CTAB-SRNA complex. The sensor exhibited a detection limit of 3 nM, which is well below the permissible limit of Pb2+ in drinking water. Our experiments establish that addition of Pb2+ leads to (i) the formation of Pb2+-SRNA complexes and (ii) a decrease in density of SRNA on the LC interface, but additional studies are required to determine which of these processes underlie the response of the LCs to the Pb2+. We have also demonstrated the potential application of the LC sensor for detection of Pb2+ in tap water. Unlike current laboratory-based heavy-metal-ion assays, this method is comparatively simple in terms of instrumentation, operation, and optical readout.


Assuntos
Chumbo/análise , Cristais Líquidos/química , Sondas Moleculares/química , RNA de Plantas/química , Spinacia oleracea/genética , Técnicas Biossensoriais/métodos
19.
Analyst ; 144(4): 1110-1114, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30687868

RESUMO

A unique design strategy was developed for the detection of dopamine using a newly synthesized amphiphile containing boronic acid head group at the aqueous-liquid crystal (LC) interface. The optical signal of LC for the detection of dopamine was highly amplified in the presence of functionalized gold nanoparticles.


Assuntos
Técnicas Biossensoriais/métodos , Dopamina/análise , Ouro/química , Cristais Líquidos/química , Nanopartículas Metálicas/química , Ácidos Borônicos/química , Sensibilidade e Especificidade
20.
Org Biomol Chem ; 17(7): 1947-1954, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30328463

RESUMO

Liquid crystals (LCs) with photoswitchable groups are very interesting owing to their dual applications. In this regard, we report the synthesis of long chain alkoxy azobenzene incorporated benzenetricarboxamides 7a-c based room temperature columnar LCs. Apart from the light induced isomerization in the solution phase, the salient feature of these systems is the reversible photoisomerization even in the bulk state with perpetual columnar self-assembly at room temperature. Based on the observation of mesomorphic textures under polarised optical microscopy (POM) and grazing incidence small/wide angle X-ray scattering (GISAXS/GIWAXS) studies, the columnar assembly was found to be stable upon photoisomerization. However, subtle changes in height profile have been observed in AFM measurements after photoswitching. Interestingly, a temperature dependent change between rectangular and hexagonal mesophases in 7a has been observed. Upon extending the alkoxy chain length, only the hexagonal mesophase was observed. For comparison, the corresponding N-methylated derivative of 7a has also been synthesized. Despite the better photoswitching behaviour, due to the lack of planarity and H-bonding, 8a did not show any columnar mesophase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA