Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Res ; 252(Pt 3): 119046, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704004

RESUMO

Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m2/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.


Assuntos
Carvão Vegetal , Corantes de Rosanilina , Termodinâmica , Poluentes Químicos da Água , Óxido de Zinco , Corantes de Rosanilina/química , Óxido de Zinco/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Corantes/química
2.
Inorg Chem ; 62(40): 16451-16463, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37737088

RESUMO

The S-scheme heterojunction photocatalyst holds potential for better photocatalysis owing to its capacity to broaden the light absorption range, ease electron-hole separation, extend the charge carrier lifespan, and maximize the redox ability. In this study, we integrate zeolitic imidazolate frameworks (ZIFs-67) with the CuFe-LDH composite, offering a straightforward approach towards creating a novel hybrid nanostructure, enabling remarkable performance in both photocatalytic hydrogen (H2) evolution and carbon dioxide (CO2) to methanol (MeOH) conversion. The ZIF-67/CuFe-LDH photocatalyst exhibits an enhanced photocatalytic hydrogen evolution rate of 7.4 mmol g-1 h-1 and an AQY of 4.8%. The superior activity of CO2 reduction to MeOH generation was 227 µmol g-1 h-1 and an AQY of 5.1%, and it still exhibited superior activity after continuously working for 4 runs with nearly negligible decay in activity. The combined spectroscopic analysis, electrochemical study, and computational data strongly demonstrate that this hybrid material integrates the advantageous properties of the individual ZIF-67 and CuFe-LDH exhibiting distinguished photon harvesting, suppression of the photoinduced electron-hole recombination kinetics, extended lifetime, and efficient charge transfer, subsequently boosting higher photocatalytic activities.

3.
Inorg Chem ; 62(19): 7235-7249, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126665

RESUMO

The construction of photoactive units in the proximity of a stable framework support is one of the promising strategies for uplifting photocatalysis. In this work, the ultrasmall Pd NPs implanted onto core-shell (CS) metal organic frameworks (MOFs), i.e., CS@Pd nanoarchitectures with tailored electronic and structural properties are reported. The all-in-one heterogeneous catalyst CS@Pd3 improves the surface functionalities and exhibits an outstanding hydrogen evolution reaction (HER) activity rate of 12.7 mmol g-1 h-1, which is 10-folds higher than the pristine frameworks with an apparent quantum efficiency (AQE) of 9.02%. The bifunctional CS@Pd shows intriguing results when subjected to photocatalytic CO2 reduction with an impressive rate of 71 µmol g-1 h-1 of MeOH under visible-light irradiation at ambient conditions. Spectroscopic data reveal efficient charge migrations and an extended lifetime of 2.4 ns, favoring efficient photocatalysis. The microscopic study affirms the formation of well-ordered CS morphology with precise decoration of Pd NPs over the CS networks. The significance of active Pd and Co sites is addressed by congruent charge-transfer kinetics and computational density functional theory calculations of CS@Pd, which validate the experimental findings with their synergistic involvement in improved photocatalytic activity. This present work provides a facile and competent avenue for the systematic construction of MOF-based CS heterostructures with active Pd NPs.

4.
Phys Chem Chem Phys ; 25(34): 23033-23046, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37599612

RESUMO

The development of a low-cost, environment-friendly and suitable semiconductor-based heterogeneous photocatalyst poses a great challenge towards extremely competent and substantial hydrogen evolution. A series of environment-friendly and proficient S-scheme Ni-doped CuWO4 nanocrystals supported on g-C3N4 nanocomposites (Ni-CuWO4/g-C3N4) were constructed to ameliorate the photocatalytic efficacy of pure g-C3N4 and Ni-CuWO4 and their activity in H2 generation through photocatalytic water splitting was evaluated. The Ni-CuWO4 nanoparticles were synthesized through doping of Ni2+ on wolframite CuWO4 crystals via the chemical precipitation method. An elevated hydrogen generation rate of 1980 µmol h-1 g-1 was accomplished over the 0.2Ni-CuWO4/g-C3N4 (0.2NCWCN) nanocomposite with an apparent quantum yield (AQY) of 6.49% upon visible light illumination (λ ≥ 420 nm), which is evidently 7.1 and 17.2 fold higher than those produced from pristine g-C3N4 and Ni-CuWO4. The substantial enhancement in the photocatalytic behaviour is primarily because of the large surface area, limited band gap energy of the semiconductor composite and magnified light harvesting capability towards visible light through the inclusion of g-C3N4, thus diminishing the reassembly rate of photoinduced excitons. Further, density functional theory (DFT) calculations were performed to investigate the structural, electronic and optical properties of the composite. Theoretical results confirmed that the Ni-CuWO4/g-C3N4 composite is a potential candidate for visible-light-driven photocatalysts and corroborated with the experimental findings. This research provides a meaningful and appealing perspective on developing cost-effective and very proficient two-dimensional (2D) g-C3N4-based materials for photocatalytic H2 production to accelerate the separation and transmission process of radiative charge carriers.

5.
Phys Chem Chem Phys ; 24(35): 20638-20673, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36047908

RESUMO

Hydrogen evolution from water splitting is considered to be an important renewable clean energy source and alternative to fossil fuels for future energy sustainability. Photocatalytic and electrocatalytic water splitting is considered to be an effective method for the sustainable production of clean energy, H2. This perspective especially emphasizes research advances in the solution-assisted synthesis of transition metal chalcogenides for both photo and electrocatalytic hydrogen evolution applications. Transition metal chalcogenides (CdS, MoS2, WS2, TiS2, TaS2, ReS2, MoSe2, and WSe2) have received intensified research interest over the past two decades on account of their unique properties and great potential across a wide range of applications. The photocatalytic activity of transition metal chalcogenides can further be improved by elemental doping, heterojunction formation with noble metals (Au, Pt, etc.), non-chalcogenides (MoS2, In2S3, NiS1-X), morphological tuning, through various solution-assisted synthesis processes, including liquid-phase exfoliation, heat-up, hot-injection methods, hydrothermal/solvothermal routes and template-mediated synthesis processes. In this review we will discuss recent developments in transition metal chalcogenides (TMCs), the role of TMCs for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution. We have included a brief discussion on the effect of surface hydrogen binding energy and Gibbs free energy change for HER in electrocatalytic hydrogen evolution.

6.
Inorg Chem ; 58(21): 14410-14419, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31613603

RESUMO

The reaction of equimolar amounts of UO2(OAc)2·2H2O, 2,6-diformyl-4-methylphenol, and N-(hydroxyethyl)ethylenediamine in methanol affords a dinuclear trans-uranyl(VI) complex of the molecular formula [(UO2)2(µ-L)2] (L2- = 2-formyl-4-methyl-6-((2-(2-oxidoethylamino)ethylimino)methyl)phenolate) in 65% yield. Detailed structural elucidation of the complex was performed by using single-crystal X-ray crystallographic and spectroscopic studies. In [(UO2)2(µ-L)2], the metal centers are in edge-shared pentagonal-bipyramidal N2O5 coordination spheres assembled by the two meridional ONNO-donor bridging L2- and two pairs of mutually trans oriented oxo groups. The complex is redox active and displays two successive metal-centered one-electron reductions at Epc = -0.71 and -1.03 V in N,N-dimethylformamide solution. The redox-active complex was used as a heterogeneous catalyst for electrochemical hydrogen evolution from aqueous medium at pH 7 with a turnover frequency (TOF) of 384 h-1 and a Tafel slope of 274 mV dec-1. The Faradaic efficiency of [(UO2)2(µ-L)2] was found to be 84%. Beyond the electrocatalytic response, the [(UO2)2(µ-L)2]-TiO2-N719 composite also exhibited significant heterogeneous photocatalytic hydrogen evolution activity in neutral aqueous medium under visible light and provided a yield of 3439 µmol gcat-1 of H2 in 4 h with a TOF of 172 h-1 and apparent quantum yield (AQY) of 7.6%.

7.
Phys Chem Chem Phys ; 18(6): 4780-8, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26806274

RESUMO

A copper metal-organic framework (Cu-MOF) provides access to Cu/CuO@TiO2 hybrid nanocomposites with highly dispersive copper species adsorbed on a TiO2 semiconducting system. This novel nanostructure exhibits efficient hydrogen evolution performance under solar illumination of intensity ∼1 Sun. The rate of H2 production was systematically optimized under different operational parameters. Experimental observation reveals that mesoporous Cu/CuO@TiO2 nanocomposite with 0.5 wt% Cu loading showed the highest rate of H2 production (286 mmol g(-1) h(-1)), which is considerably higher than that of CuO loaded TiO2 prepared using a conventional impregnation method. This high photocatalytic H2 production activity is attributed predominantly to the presence of surface deposited Cu(0) species and the small size of the heterojunction (1-2 nm) between CuO and TiO2, which facilitate interfacial charge carrier transfer from the TiO2 nanoparticles. The catalyst showed good recyclability under prolonged exposure (30 h) to solar irradiation. Unlike many Pt decorated TiO2 photocatalysts, this hybrid photocatalyst provides an inexpensive means of harnessing solar energy.

8.
Phys Chem Chem Phys ; 18(22): 15260-8, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27212470

RESUMO

Substantial efforts have been made in recent times in solving the major limiting factors affecting the efficiency of a photocatalyst. The fabrication of efficient junction architectures is one of the viable approaches to resolve this setback. We have developed a facile and systematic approach for the synthesis of anatase TiO2 () nanoparticles and 1-D anatase and rutile TiO2 () heterojunction nanorods to enhance the interfacial contact area by adjusting the titanium(iv) butoxide (TBOT) to titanium chloride (TiCl4) volume ratio. Their narrower band gap, increasing surface area and anatase phase composition engineered by adjusting the relative concentrations of titanium butoxide (TBOT) and titanium chloride (TiCl4) (TBOT/TiCl4, 1 : 0, 1 : 0.25, 1 : 1 and 1 : 4 v/v for , , and respectively) are also addressed. The materials showed impressive photocatalytic activity for H2 evolution from water/methanol and the photodegradation of organic pollutants like rhodamine B (RhB) and methylene blue (MB) dyes. showed superior activity (16.4 mmol g(-1) h(-1)) with an apparent quantum efficiency (AQE) of 7.7% together with its long-term stability. This is attributed to the synergistic effect observed in the mixed phase nanorod heterojunction photocatalyst. Methyl viologen (MV(2+)) has been used as a probe to elucidate the photocatalytic activities and highlight the heterojunction driven separation of photo-excited charge carriers for enhanced hydrogen production.

9.
Angew Chem Int Ed Engl ; 55(8): 2705-8, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26800297

RESUMO

A generic modular synthetic strategy for the fabrication of a series of binary-ternary group II-VI and group I-III-VI coupled semiconductor nano-heterostructures is reported. Using Ag2 Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe-AgInSe2 , CdSe-AgGaSe2 , ZnSe-AgInSe2 , and ZnSe-AgGaSe2 . Among these, dispersive type-II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi-conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated.

10.
Phys Chem Chem Phys ; 17(31): 20407-15, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26196359

RESUMO

ZnO/CdS heterostructured nanocomposites were fabricated with enhanced light harvesting capability and photostability using sequential sonochemical and hydrothermal methods from ZnO rods and particles. Interestingly, in the composite made up of CdS sensitized ZnO rods, both ZnO and CdS exist in the hexagonal wurtzite form with different morphologies. On the other hand, in the composite made up of CdS sensitized ZnO particles, ZnO exists in the hexagonal wurtzite form, whereas CdS in the cubic form but with a similar morphology. The synthesized photocatalysts under simulated solar irradiation exhibited hydrogen evolution rates of 870 and 1007 µmol h(-1) g(-1) for the ZnO rod/CdS and ZnO nanoparticle/CdS composites, respectively, compared to the native ZnO (40 µmol h(-1) g(-1) for rods and 154 µmol h(-1) g(-1) for particles) and CdS (208 µmol h(-1) g(-1)) structures. The apparent quantum yield of CdS was only 1.2%, whereas the composites exhibited much higher quantum yields of 4.9% and 5.7%. Our results confirmed that the morphology of the host matrix ZnO played a crucial role in forming ZnO/CdS heterostructures with improved interface for the direct Z-scheme mechanism with enhanced hydrogen evolution efficiency.

11.
Phys Chem Chem Phys ; 17(20): 13710-8, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25942447

RESUMO

We have designed and synthesized two new diketopyrrolopyrrole (DPP) based organic sensitizers (DPPCA and DPPCN) with the dithiafulvalene (DTF) unit as donor and cyanoacrylic acid/malononitrile as acceptor moieties. These dyes showed excellent efficiency of photocatalytic hydrogen production over a Pt-TiO2 composite via solar-induced water splitting. The sensitizers showed broad absorptions over the wide visible regime (500-800 nm). In DPPCN, the malononitrile moiety led to strong intra-molecular charge transfer, as evidenced by red shifted (∼24 nm) absorption maxima with highly enhanced molar absorptivity (108 190 M(-1) cm(-1)). The electrochemical characterization of as-prepared sensitizers confirmed the feasible electron injection from the dye to the TiO2 conduction band (CB) which has been further validated by theoretical studies. In this study, the rate of the photocatalytic activity was found to be dependent on the acceptor part of the dye molecule as DPPCN sensitized Pt-TiO2 (DNPT) exhibited remarkable (1208 µmol) hydrogen evolution yield in comparison to DPPCA sensitized Pt-TiO2 (DAPT) (840 µmol). The rigid DPP core made the sensitizers significantly photo-stable as affirmed by their high hydrogen production efficiency over 80 h of prolonged irradiation. As predicted from density functional theory (DFT) calculations, ground state geometry of the dyes was almost planar, facilitating continuous conjugation throughout the molecule. Time-dependent DFT (TD-DFT) calculations were also carried out to make clear the understanding of charge transfer transition of the dye molecules.

12.
Adv Colloid Interface Sci ; 330: 103203, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820883

RESUMO

Sputtering is an effective technique for producing ultrathin films with diverse applications. The review begins by providing an in-depth overview of the background, introducing the early development of sputtering and its principles. Consequently, progress in advancements made in recent decades highlights the renaissance of sputtering as a powerful technology for creating thin films with varied compositions, structures, and properties. For the first time, we have discussed a thorough overview of several sputtered thin film materials based on metal and metal oxide, metal nitride, alloys, carbon, and ceramic-based thin film along with their properties and their applicability in various fields. We further delve into the applications of sputter-coated thin films, specifically emphasizing their relevance in environmental sustainability, energy and electronics, and biomedical fields. We critically examine the recent advancements in developing sputter-coated catalysts for eliminating water pollutants andhydrogen generation. Additionally, the review sheds light on advantages, shortcomings, and future directions for developing sputter-coated thin films utilized in biodegradable metals and alloys with enhanced corrosion resistance and biocompatibility. This review is a comprehensive integration of recent literature, covering diverse sputtering thin film applications. We delve deeply into various material types and emphasize critical analysis of recent advancements, particularly in environmental, energy, and biomedical fields. By offering insights into both advancements and limitations, the review provides a nuanced understanding essential for practical utilization.

13.
Environ Sci Pollut Res Int ; 31(19): 27770-27788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514592

RESUMO

The objective of this research is to create a highly effective approach for eliminating pollutants from the environment through the process of photocatalytic degradation. The study centers around the production of composites consisting of CaCu3Ti4O12 (CCTO) and reduced graphene oxide (rGO) using an ultrasonic-assisted method, with a focus on their capacity to degrade ibuprofen (IBF) and ciprofloxacin (CIP) via photodegradation. The impact of rGO on the structure, morphology, and optical properties of CCTO was inspected using XRD, FTIR, Raman, FESEM, XPS, BET, and UV-Vis. Morphology characterization showed that rGO particles were dispersed within the CCTO matrix without any specific chemical interaction between CCTO and C in the rGO. The BET analysis revealed that with increasing the amount of rGO in the composite, the specific surface area significantly increased compared to the CCTO standalone. Besides, increasing rGO resulted in a reduction in the optical bandgap energy to around 2.09 eV, makes it highly promising photocatalyst for environmental applications. The photodegradation of IBF and CIP was monitored using visible light irradiation. The results revealed that both components were degraded above 97% after 60 min. The photocatalyst showed an excellent reusability performance with a slight decrease after five runs to 93% photodegradation efficiency.


Assuntos
Ciprofloxacina , Grafite , Ibuprofeno , Fotólise , Ibuprofeno/química , Grafite/química , Ciprofloxacina/química , Catálise , Poluentes Químicos da Água/química
14.
Clin Chim Acta ; 554: 117788, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246211

RESUMO

Cancer is a complex pathophysiological condition causing millions of deaths each year. Early diagnosis is essential especially for pancreatic cancer. Existing diagnostic tools rely on circulating biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA). Unfortunately, these markers are nonspecific and may be increased in a variety of disorders. Accordingly, diagnosis of pancreatic cancer generally involves more invasive approaches such as biopsy as well as imaging studies. Recent advances in biosensor technology have allowed the development of precise diagnostic tools having enhanced analytical sensitivity and specificity. Herein we examine these advances in the detection of cancer in general and in pancreatic cancer specifically. Furthermore, we highlight novel technologies in the measurement of CA19-9 and CEA and explore their future application in the early detection of pancreatic cancer.


Assuntos
Antígeno Carcinoembrionário , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores Tumorais , Neoplasias Pancreáticas/diagnóstico , Sensibilidade e Especificidade
15.
J Phys Chem Lett ; 14(50): 11400-11411, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38079360

RESUMO

The presence of transition-metal single-atom catalysts effectively enhances the interaction between the substrate and reactant molecules, thus exhibiting extraordinary catalytic performance. In this work, we for the first time report a facile synthetic procedure for placing highly dispersed Ru single atoms on stable CNF(ZnO) nanocages. We unravel the atomistic nature of the Ru single atoms in CNF(ZnO)/Ru systems using advanced HAADF-STEM, HRTEM, and XANES analytical methods. Density functional theory calculations further support the presence of ruthenium single-atom sites in the CNF(ZnO)/Ru system. Our work further demonstrates the excellent photocatalytic ability of the CNF(ZnO)/Ru system with respect to H2 production (5.8 mmol g-1 h-1) and reduction of CO2 to CH3OH [249 µmol (g of catalyst)-1] with apparent quantum efficiencies of 3.8% and 1.4% for H2 and CH3OH generation, respectively. Our studies unambiguously demonstrate the presence of atomically dispersed ruthenium sites in CNF(ZnO)/Ru catalysts, which greatly enhance charge transfer, thus facilitating the aforementioned photocatalytic redox reactions.

16.
ACS Appl Mater Interfaces ; 15(48): 55822-55836, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37994833

RESUMO

Defect engineering through modification of their surface linkage is found to be an effective pathway to escalate the solar energy conversion efficiency of metal-organic frameworks (MOFs). Herein, defect engineering using controlled decarboxylation on the NH2-UiO-66 surface and integration of ultrathin NiCo-LDH nanosheets synergizes the hydrogen evolution reaction (HER) under a broad visible light regime. Diversified analytical methods including positron annihilation lifetime spectroscopy were employed to investigate the role of Zr3+-rich defects by analyzing the annihilation characteristics of positrons in NH2-UiO-66, which provides a deep insight into the effects of structural defects on the electronic properties. The progressively tuned photophysical properties of the NiCo-LDH@NH2-UiO-66-D-heterostructured nanocatalyst led to an impressive rate of HER (∼2458 µmol h-1 g-1), with an apparent quantum yield of ∼6.02%. The ultrathin NiCo-LDH nanosheet structure was found to be highly favored toward electrostatic self-assembly in the heterostructure for efficient charge separation. Coordination of Zr3+ on the surface of the NiCo-LDH nanosheet support through NH2-UiO-66 was confirmed by X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy techniques. Femtosecond transient absorption spectroscopy studies unveiled a photoexcited charge migration process from MOF to NiCo-LDH which favorably occurred on a picosecond time scale to boost the catalytic activity of the composite system. Furthermore, the experimental finding and HER activity are validated by density functional theory studies and evaluation of the free energy pathway which reveals the strong hydrogen binding over the surface and infers the anchoring effect of the ultrathin layered double hydroxide (LDH) in the vicinity of the Zr cluster with a strong host-guest interaction. This work provided a novel insight into efficient photocatalysis via defect engineering at the linker modulation in MOFs.

17.
Heliyon ; 8(8): e10167, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36042741

RESUMO

Indiscriminate waste discharge into water bodies has increased the level of water pollution via anthropogenic activities. Hence the need for the development of sustainable and environmentally benign nanomaterials has the potential for wastewater treatment. Rice husk activated carbon (RHAC) prepared by orthophosphoric acid activation was successfully loaded with freshly prepared ZnO nanoparticles by a bottom-up approach via precipitation method resulting in the RHAC-ZnO-NC. RHAC-ZnO-NC's mineralogy with 72% zincite was determined by XRD, morphology by SEM, and the functional group by FTIR. The physicochemical parameters showed surface area 615.2 m2 g-1 , pH (pzc) (6.62), pH (6.53), bulk density (0.88 g/cm3), ash content (18.45%), and volatile matter (58.08%). The porosity was determined by iodine number. Boehm titration was carried out for oxygen-bearing functional group determination. The study substantiated RHAC-ZnO-NC as a promising material for adsorption and photocatalytic degradation.

18.
Commun Chem ; 5(1): 165, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697663

RESUMO

Conjugated polymers and titanium-based metal-organic framework (Ti-MOF) photocatalysts have demonstrated promising features for visible-light-driven hydrogen production. We report herein a strategy of anisotropic phenanthroline-based ruthenium polymers (PPDARs) over Ti-MOF, a tunable platform for efficient visible-light-driven photocatalytic hydrogen evolution reaction (HER). Several analytical methods including X-ray absorption spectroscopy (XAS) revealed the judicious integration of the surface-active polymer over the Ti-MOF reinforcing the catalytic activity over the broad chemical space. PPDAR-4 polyacrylate achitecture led to a substantial increase in the H2 evolution rate of 2438 µmolg-1h-1 (AQY: 5.33%) compared to pristine Ti-MOF (238 µmol g-1 h-1). The separation of photogenerated charge carriers at the PPDAR-4/Ti-MOF interface was confirmed by the optical and electrochemical investigations. The experimental, as well as theoretical data, revealed their physical and chemical properties which are positively correlated with the H2 generation rate. This offers a new avenue in creating polymer-based MOF robust photocatalysts for sustainable energy.

19.
J Org Chem ; 76(21): 8962-76, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21942643

RESUMO

Substituted 4-alkylideneprolines represent a rare class of naturally occurring amino acids with promising biological activities. Lucentamycin A is a cytotoxic, marine-derived tripeptide that harbors a 4-ethylidine-3-methylproline (Emp) residue unique among known peptide natural products. In this paper, we examine the synthesis of Emp and related 4-alkylideneprolines employing a versatile ester enolate-Claisen rearrangement. The scope and selectivity of the key rearrangement reaction are described with a number of diversely substituted glycine ester substrates. Treatment of the allyl esters with excess NaHMDS at ambient temperature gives rise to highly substituted α-allylglycine products with good to excellent diastereoselectivities. Resolution of dipeptide diastereomers and cyclization to form the pyrrolidine rings provide rapid access to stereopure prolyl dipeptides. We have applied this strategy to the synthesis of four Emp-containing isomers of lucentamycin A in pursuit of a definitive stereochemical revision of the natural product. Our studies indicate that the Emp stereogenic centers are not the source of structural misassignment. The current strategy should find broad utility in the synthesis of additional natural product analogues and related 3-alkyl-4-alkylidene prolines.


Assuntos
Alcenos/química , Oligopeptídeos/química , Prolina/química , Ésteres , Estrutura Molecular , Estereoisomerismo
20.
Chem Commun (Camb) ; 57(69): 8660-8663, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34373883

RESUMO

A highly efficient hybrid ZnCdS-rGO/MoS2 heterostructure is successfully synthesized through a hot injection method and control loading of rGO/MoS2. The synergism provides an unprecedently high H2-generation rate of 193.4 mmol H2 g-1 h-1 from water under full arc solar radiation and MeOH production (5.26 mmol g-1 h-1, AQY of 14.6% at λ = 420 ± 20 nm) from CO2 reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA