Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 106(32): 13242-7, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666603

RESUMO

In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIB(C)). The tTFIIB(C) structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIB(C) contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.


Assuntos
Fator de Transcrição TFIIB/química , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , DNA/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Homologia Estrutural de Proteína , Fator de Transcrição TFIIB/isolamento & purificação , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica
2.
RNA ; 15(8): 1554-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19541768

RESUMO

A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Animais , Fosfatos de Dinucleosídeos/metabolismo , Genes de Protozoários , Cinética , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Protozoários/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma brucei brucei/genética
3.
Mol Cell Biol ; 25(16): 7314-22, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16055739

RESUMO

Protein-coding genes of trypanosomes are mainly transcribed polycistronically and cleaved into functional mRNAs in a process that requires trans splicing of a capped 39-nucleotide RNA derived from a short transcript, the spliced-leader (SL) RNA. SL RNA genes are individually transcribed from the only identified trypanosome RNA polymerase II promoter. We have purified and characterized a sequence-specific SL RNA promoter-binding complex, tSNAP(c), from the pathogenic parasite Trypanosoma brucei, which induces robust transcriptional activity within the SL RNA gene. Two tSNAP(c) subunits resemble essential components of the metazoan transcription factor SNAP(c), which directs small nuclear RNA transcription. A third subunit is unrelated to any eukaryotic protein and identifies tSNAP(c) as a unique trypanosomal transcription factor. Intriguingly, the unusual trypanosome TATA-binding protein (TBP) tightly associates with tSNAPc and is essential for SL RNA gene transcription. These findings provide the first view of the architecture of a transcriptional complex that assembles at an RNA polymerase II-dependent gene promoter in a highly divergent eukaryote.


Assuntos
RNA Líder para Processamento , Proteína de Ligação a TATA-Box/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Núcleo Celular/metabolismo , Cromatografia , DNA/química , Eletroforese em Gel de Poliacrilamida , Imunoglobulina G/química , Imunoprecipitação , Técnicas In Vitro , Modelos Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei
4.
Methods Mol Biol ; 442: 83-94, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369780

RESUMO

RNA interference (RNAi) is a cellular mechanism that is often exploited as a technique for quelling the expression of a specific gene. RNAi studies are carried out in vivo, making this a powerful means for the study of protein function in situ Several trypanosomatids, including those organisms responsible for human and animal diseases, naturally possess the machinery necessary for RNAi manipulations. This allows for the use of RNAi in unraveling many of the pressing questions regarding the parasite's unique biology. The completion of the Trypanosoma brucei genome sequence, coupled with several powerful genetic tools, has resulted in widespread utilization of RNAi in this organism. The key steps for RNAi-based reduction of gene expression, including parasite cell culture, DNA transfection, RNAi expression, and experimental execution, are discussed with a focus on procyclic forms of Trypanosoma brucei.


Assuntos
Interferência de RNA , Trypanosoma brucei brucei/genética , Animais , Células Cultivadas , Genoma Helmíntico , Humanos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Trypanosoma brucei brucei/fisiologia
5.
Mol Biochem Parasitol ; 146(2): 135-41, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16427709

RESUMO

Trypanosoma brucei and the other members of the trypanosomatid family of parasitic protozoa, contain an unusual RNA polymerase II enzyme, uncoordinated mRNA 5' capping and transcription initiation events, and most likely contain an abridged set of transcription factors. Pre-mRNA start sites remain elusive. In addition, two important life cycle stage-specific mRNAs are transcribed by RNA polymerase I. This review interprets these unusual transcription traits in the context of parasite biology.


Assuntos
Transcrição Gênica , Trypanosoma brucei brucei/genética , Animais , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , RNA de Protozoário/biossíntese , Sítio de Iniciação de Transcrição , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento
6.
Mol Biochem Parasitol ; 147(2): 211-23, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16564583

RESUMO

African trypanosomes (Trypanosoma brucei) have a digenetic lifecycle that alternates between the mammalian bloodstream and the tsetse fly vector. In the bloodstream, replicating long slender parasites transform into non-dividing short stumpy forms. Upon transmission into the fly midgut, short stumpy cells differentiate into actively dividing procyclics. A hallmark of this process is the replacement of the bloodstream-stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procyclin. Pre-existing VSG is shed by a zinc metalloprotease activity (MSP-B) and glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC). We now provide a detailed analysis of the coordinate and inverse regulation of these activities during synchronous differentiation. MSP-B mRNA and protein levels are upregulated during differentiation at the same time as proteolysis whereas GPI-PLC levels decrease. When transcription or translation is inhibited, VSG release is incomplete and a substantial amount of protein stays cell-associated. Both modes of release are still evident under these conditions, but GPI hydrolysis plays a quantitatively minor role during normal differentiation. Nevertheless, GPI biosynthesis shifts early in differentiation from a GPI-PLC sensitive structure to a resistant procyclic-type anchor. Translation inhibition also results in a marked increase in the mRNA levels of both MSP-B and GPI-PLC, consistent with negative regulation by labile protein factors. The relegation of short stumpy surface GPI-PLC to a secondary role in differentiation suggests that it may play a more important role as a virulence factor within the mammalian host.


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Animais , Glicosilfosfatidilinositol Diacilglicerol-Liase , Estágios do Ciclo de Vida , Glicoproteínas de Membrana/genética , Metaloproteases/genética , Camundongos , Fosfatidilinositol Diacilglicerol-Liase , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
7.
Protein Sci ; 12(8): 1694-705, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12876319

RESUMO

Adenylosuccinate lyase is a homotetramer that catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide (SAICAR). Several point mutations in the gene encoding the enzyme have been implicated in human disease. Bacillus subtilis adenylosuccinate lyase was used as a model system in which mutations were constructed corresponding to those mutations associated with severe human adenylosuccinate lyase deficiency. Site-directed mutagenesis was utilized to construct amino acid substitutions in B. subtilis adenylosuccinate lyase; Met(10), Ile(123), and Thr(367) were replaced by Leu, Trp, and Arg, respectively, and the altered enzymes were expressed in Escherichia coli. These purified enzymes containing amino acid substitutions were found to have substantial catalytic activity and exhibit relatively small changes in their kinetic parameters. The major deviations from the wild-type-like behavior were observed upon biophysical characterization. All of these enzymes with amino acid replacements are associated with marked thermal instability. I123W adenylosuccinate lyase exhibits notable changes in the circular dichroism spectra, and a native gel electrophoresis pattern indicative of some protein aggregation. T367R also exhibits alterations at the quarternary level, as reflected in native gel electrophoresis. Experimental results, combined with homology modeling, suggest that the altered enzymes are primarily structurally impaired. The enzyme instability was found to be lessened by subunit complementation with the wild-type enzyme, under mild conditions; these studies may have implications for the in vivo behavior of adenylosuccinate lyase in heterozygous patients. Residues Met(10), Ile(123), and Thr(367) appear to be located in regions of the enzyme important for maintaining the structural integrity required for a stable, functional enzyme.


Assuntos
Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Mutação de Sentido Incorreto/genética , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Estabilidade Enzimática , Teste de Complementação Genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Mol Biochem Parasitol ; 184(1): 13-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22498309

RESUMO

Understanding how the biological connectivity of genes and gene products affects evolution is an important aspect of understanding evolution. Genes encoding enzymes are frequently used to carry out such analyses. Interestingly, studies have shown that connectivity in the metabolic networks in parasitic protists, including Plasmodium falciparum and Trypanosoma brucei, have been substantially altered as compared to free living eukaryotes, such as Saccharomyces cerevisiae. Herein, we have determined K(a) values, which are a measure of the non-synonymous substitution rate, and used them to examine the differences between the evolution of genes in T. brucei, P. falciparum, S. cerevisiae, and Schizosaccharomyces pombe. All four organisms share similar traits with respect to the evolution of genes encoding metabolic enzymes. First, genes encoding metabolic enzymes have lower K(a) values than genes encoding non-metabolic proteins. In addition, perturbations of the metabolic network appear to have limited affects on the genes encoding enzymes near the perturbation. In most cases, there is a negative relationship between connectivity in the metabolic network of the gene product and the K(a) value for the gene, i.e. examining how much constraint there is on gene evolution when it is connected to many other genes. In addition, we find that the K(a) values of orthologs encoding for metabolic enzymes in each organism are significantly correlated, indicating similar patterns of non-synonymous substitutions. In total, our results indicate that the evolution of genes encoding metabolic enzymes do not tend to be greatly affected by changes in the metabolic network.


Assuntos
Redes e Vias Metabólicas/genética , Plasmodium falciparum/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Trypanosoma brucei brucei/genética , Substituição de Aminoácidos , Eucariotos , Evolução Molecular , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo
9.
Mol Biochem Parasitol ; 181(2): 94-101, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22024471

RESUMO

Trypanosoma brucei, the causative agent of African Sleeping Sickness, is replete with unique biochemistry, including unusual features of gene transcription. The parasite also contains over 4500 non-annotated genes, representing novel biochemistry yet to be explored. Using tandem affinity purification (TAP)-tagged TbTFIIB, we identified and subsequently confirmed, one of the non-annotated T. brucei proteins, Tb11.02.4300, as a TbTFIIB-interacting protein. The 49 kDa protein is nuclear and essential for parasite variability as determined by RNA interference studies; hence, the nomenclature T. brucei Essential Nuclear Factor (TbENF). TbENF is shown to interact with DNA in a sequence-independent fashion under the conditions examined. Furthermore, TbENF bears motifs associated with many eukaryotic transcription factors, such as a glutamine-rich region and a leucine zipper, yet TbENF is specific to trypanosomatids making it a potentially attractive therapeutic target. Taken together, our results suggest a role for TbENF in trypanosome gene transcription.


Assuntos
Proteínas de Protozoários , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trypanosoma brucei brucei , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
10.
Mol Biochem Parasitol ; 186(2): 139-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22999857

RESUMO

RNA polymerase II (RNAP-II) synthesizes the m(7)G-capped Spliced Leader (SL) RNA and most protein-coding mRNAs in trypanosomes. RNAP-II recruitment to DNA usually requires a set of transcription factors that make sequence-specific contacts near transcriptional start sites within chromosomes. In trypanosomes, the transcription factor TFIIB is necessary for RNAP-II-dependent SL RNA transcription. However, the trypanosomal TFIIB (tTFIIB) lacks the highly basic DNA binding region normally found in the C-terminal region of TFIIB proteins. To assess the precise pattern of tTFIIB binding within the SL RNA gene locus, as well as within several other loci, we performed chromatin immunoprecipitation/microarray analysis using a tiled gene array with a probe spacing of 10 nucleotides. We found that tTFIIB binds non-randomly within the SL RNA gene locus mainly within a 220-nt long region that straddles the transcription start site. tTFIIB does not bind within the small subunit (SSU) rRNA locus, indicating that trypanosomal TFIIB is not a component of an RNAP-I transcriptional complex. Interestingly, discrete binding sites were observed within the putative promoter regions of two loci on different chromosomes. These data suggest that although trypanosomal TFIIB lacks a highly basic DNA binding region, it nevertheless localizes to discrete regions of chromatin that include the SL RNA gene promoter.


Assuntos
Cromossomos/genética , Cromossomos/metabolismo , Regiões Promotoras Genéticas , RNA Líder para Processamento , Fator de Transcrição TFIIB/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Análise em Microsséries , Ligação Proteica
11.
Mol Biochem Parasitol ; 179(2): 100-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767577

RESUMO

A putative ß-hydroxybutyrate dehydrogenase (ßHBDH) ortholog was identified in Trypanosoma brucei, the unicellular eukaryotic parasite responsible for causing African Sleeping Sickness. The trypanosome enzyme has greater sequence similarity to bacterial sources of soluble ßHBDH than to membrane-bound Type I ßHBDH found in higher eukaryotes. The ßHBDH gene was cloned from T. brucei genomic DNA and active, recombinant His-tagged enzyme (His(10)-TbßHBDH) was purified to approximate homogeneity from E. coli. ßHBDH catalyzes the reversible NADH-dependent conversion of acetoacetate to D-3-hydroxybutyrate. In the direction of D-3-hydroxybutyrate formation, His(10)-TbßHBDH has a k(cat) value of 0.19 s(-1) and a K(M) value of 0.69 mM for acetoacetate. In the direction of acetoacetate formation, His(10)-TbßHBDH has a k(cat) value of 11.2 s(-1) and a K(M) value of 0.65 mM for D-3-hydroxybutyrate. Cofactor preference was examined and His(10)-TbßHBDH utilizes both NAD(H) and NADP(H) almost equivalently, distinguishing the parasite enzyme from other characterized ßHBDHs. Furthermore, His(10)-TbßHBDH binds NAD(P)(+) in a cooperative fashion, another unique characteristic of trypanosome ßHBDH. The apparent native molecular weight of recombinant His(10)-TbßHBDH is 112 kDa, corresponding to tetramer, as determined through size exclusion chromatography. RNA interference studies in procyclic trypanosomes were carried out to evaluate the importance of TbßHBDH in vivo. Upon knockdown of TbßHBDH, a small reduction in parasite growth was observed suggesting ßHBDH has an important physiological role in T. brucei.


Assuntos
Hidroxibutirato Desidrogenase/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes , Hidroxibutirato Desidrogenase/genética , Hidroxibutirato Desidrogenase/isolamento & purificação , Dados de Sequência Molecular , NAD/metabolismo , NADP/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
12.
Eukaryot Cell ; 5(2): 293-300, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16467470

RESUMO

Transcription by RNA polymerase II in trypanosomes deviates from the standard eukaryotic paradigm. Genes are transcribed polycistronically and subsequently cleaved into functional mRNAs, requiring trans splicing of a capped 39-nucleotide leader RNA derived from a short transcript, the spliced leader (SL) RNA. The only identified trypanosome RNA polymerase II promoter is that of the SL RNA gene. We have previously shown that transcription of SL RNA requires divergent trypanosome homologs of RNA polymerase II, TATA binding protein, and the small nuclear RNA (snRNA)-activating protein complex. In other eukaryotes, TFIIB is an additional key component of transcription for both mRNAs and polymerase II-dependent snRNAs. We have identified a divergent homolog of the usually highly conserved basal transcription factor, TFIIB, from the pathogenic parasite Trypanosoma brucei. T. brucei TFIIB (TbTFIIB) interacted directly with the trypanosome TATA binding protein and RNA polymerase II, confirming its identity. Functionally, in vitro transcription studies demonstrated that TbTFIIB is indispensable in SL RNA gene transcription. RNA interference (RNAi) studies corroborated the essential nature of TbTFIIB, as depletion of this protein led to growth arrest of parasites. Furthermore, nuclear extracts prepared from parasites depleted of TbTFIIB, after the induction of RNAi, required recombinant TbTFIIB to support spliced leader transcription. The information gleaned from TbTFIIB studies furthers our understanding of SL RNA gene transcription and the elusive overall transcriptional processes in trypanosomes.


Assuntos
RNA Polimerase II/metabolismo , RNA Líder para Processamento/genética , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica/genética , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB/química , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
13.
Biochemistry ; 42(7): 1831-41, 2003 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-12590570

RESUMO

Adenylosuccinate lyase, an enzyme catalyzing two reactions in purine biosynthesis (the cleavage of either adenylosuccinate or succinylaminoimidazole carboxamide ribotide), has been implicated in a human disease arising from point mutations in the gene encoding the enzyme. Asn(276) of Bacillus subtilis adenylosuccinate lyase, a residue corresponding to the location of a human enzyme mutation, was replaced by Cys, Ser, Ala, Arg, and Glu. The mutant enzymes exhibit decreased V(max) values (2-400-fold lower) for both substrates compared to the wild-type enzyme and some changes in the pH dependence of V(max) but no loss in affinity for adenylosuccinate. Circular dichroism reveals no difference in secondary structure between the wild-type and mutant enzymes. We show here for the first time that wild-type adenylosuccinate lyase exhibits a protein concentration dependence of molecular weight, secondary structure, and specific activity. An equilibrium constant between the dimer and tetramer was measured by light scattering for the wild-type and mutant enzymes. The equilibrium is somewhat shifted toward the tetramer in the mutant enzymes. The major difference between the wild-type and mutant enzymes appears to be in quaternary structure, with many mutant enzymes exhibiting marked thermal instability relative to the wild-type enzyme. We propose that mutations at position 276 result in structurally impaired adenylosuccinate lyases which are assembled into defective tetramers.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenilossuccinato Liase/química , Adenilossuccinato Liase/deficiência , Aminoimidazol Carboxamida/análogos & derivados , Asparagina/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Mutagênese Sítio-Dirigida , Monofosfato de Adenosina/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/isolamento & purificação , Sequência de Aminoácidos , Aminoimidazol Carboxamida/química , Arginina/genética , Asparagina/genética , Asparagina/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Dicroísmo Circular , Ativação Enzimática/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Peso Molecular , Mutação Puntual , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Ribonucleotídeos/química , Especificidade por Substrato/genética , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA