Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 10(29): 16982-16986, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35496935

RESUMO

A strategy for optical nanothermometry using the negative thermal quenching behavior of intrinsic BiFeO3 semiconductor nanoparticles has been reported here. X-ray diffraction measurement shows polycrystalline BiFeO3 nanoparticles with a rhombohedral distorted perovskite structure. Transmission electron microscopy shows agglomerated crystalline nanoparticles around 20 nm in size. Photoluminescence measurements show that intensity of the defect level emission increases significantly with temperature, while the intensity of near band emission and other defect levels emissions show an opposite trend. The most important figures of merit for luminescence nanothermometry: the absolute (S a) and the relative sensor sensitivity (S r) and the temperature resolution (ΔT m) were effectively resolved and calculated. The relative sensitivity and temperature resolution values are found to be 2.5% K-1 and 0.2 K, respectively which are among the highest reported values observed so far for semiconductors.

2.
Sci Rep ; 5: 7719, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25591924

RESUMO

Bulk crystals and thin films of PbTi(1-x)FexO3(-δ) (PTFO) are multiferroic, exhibiting ferroelectricity and ferromagnetism at room temperature. Here we report that the Ruddlesden-Popper phase Pbn+1(Ti(1-x)Fex)nO3(n+1)-δ forms spontaneously during pulsed laser deposition of PTFO on LaAlO3 substrates. High-resolution transmission electron microscopy, x-ray diffraction and x-ray photoemission spectroscopy were utilised to perform a structural and compositional analysis, demonstrating that n ≃ 8 and x ≃ 0.5. The complex dielectric function of the films was determined from far-infrared to ultraviolet energies using a combination of terahertz time-domain spectroscopy, Fourier transform spectroscopy, and spectroscopic ellipsometry. The simultaneous Raman and infrared activity of phonon modes and the observation of second harmonic generation establishes a non-centrosymmetric point group for Pbn+1(Ti0.5Fe0.5)nO3(n+1)-δ, a prerequisite for (but not proof of) ferroelectricity. No evidence of macroscopic ferromagnetism was found in SQUID magnetometry. The ultrafast optical response exhibited coherent magnon oscillations compatible with local magnetic order, and additionally was used to study photocarrier cooling on picosecond timescales. An optical gap smaller than that of BiFeO3 and long photocarrier lifetimes may make this system interesting as a ferroelectric photovoltaic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA