Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 154(5): 1010-1022, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993094

RESUMO

Most eukaryotic cells express small regulatory RNAs. The purpose of one class, the somatic endogenous siRNAs (endo-siRNAs), remains unclear. Here, we show that the endo-siRNA pathway promotes odor adaptation in C. elegans AWC olfactory neurons. In adaptation, the nuclear Argonaute NRDE-3, which acts in AWC, is loaded with siRNAs targeting odr-1, a gene whose downregulation is required for adaptation. Concomitant with increased odr-1 siRNA in AWC, we observe increased binding of the HP1 homolog HPL-2 at the odr-1 locus in AWC and reduced odr-1 mRNA in adapted animals. Phosphorylation of HPL-2, an in vitro substrate of the EGL-4 kinase that promotes adaption, is necessary and sufficient for behavioral adaptation. Thus, environmental stimulation amplifies an endo-siRNA negative feedback loop to dynamically repress cognate gene expression and shape behavior. This class of siRNA may act broadly as a rheostat allowing prolonged stimulation to dampen gene expression and promote cellular memory formation. PAPERFLICK:


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Regulação para Baixo , Guanilato Ciclase/genética , Interferência de RNA , Células Receptoras Sensoriais/metabolismo , Adaptação Fisiológica , Animais , Butanonas/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Odorantes , Fosforilação , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818613

RESUMO

The transcriptional co-regulator SIN3 influences gene expression through multiple interactions that include histone deacetylases. Haploinsufficiency and mutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and related intellectual disability and autism syndromes, emphasizing its key role in development. However, little is known about the diversity of its interactions and functions in developmental processes. Here, we show that loss of SIN-3, the single SIN3 homolog in Caenorhabditis elegans, results in maternal-effect sterility associated with de-regulation of the germline transcriptome, including de-silencing of X-linked genes. We identify at least two distinct SIN3 complexes containing specific histone deacetylases and show that they differentially contribute to fertility. Single-cell, single-molecule fluorescence in situ hybridization reveals that in sin-3 mutants the X chromosome becomes re-expressed prematurely and in a stochastic manner in individual germ cells, suggesting a role for SIN-3 in its silencing. Furthermore, we identify histone residues whose acetylation increases in the absence of SIN-3. Together, this work provides a powerful framework for the in vivo study of SIN3 and associated proteins.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Histona Desacetilases , Complexo Correpressor Histona Desacetilase e Sin3 , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Hibridização in Situ Fluorescente , Cromossomo X/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo
3.
Nucleic Acids Res ; 47(21): 11164-11180, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31602465

RESUMO

The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Complexos Multiproteicos/fisiologia , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Transativadores/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Histona-Lisina N-Metiltransferase/fisiologia , Complexos Multiproteicos/metabolismo , Ligação Proteica
4.
EMBO Rep ; 16(3): 332-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25652260

RESUMO

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Transdução de Sinais/genética , Transcrição Gênica/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Adenosina Trifosfatases/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estresse do Retículo Endoplasmático/genética , Proteômica/métodos , Interferência de RNA , Proteínas Repressoras/metabolismo , Proteína com Valosina
5.
Proc Natl Acad Sci U S A ; 111(16): 5956-61, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24715729

RESUMO

Cellular adaptation to environmental changes and stress relies on a wide range of regulatory mechanisms that are tightly controlled at several levels, including transcription. Chromatin structure and chromatin binding proteins are important factors contributing to the transcriptional response to stress. However, it remains largely unknown to what extent specific chromatin factors influence the response to distinct forms of stress in a developmental context. One of the best characterized stress response pathways is the unfolded protein response (UPR), which is activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). Here, we show that Caenorhabditis elegans heterochromatin protein like-2 (HPL-2), the homolog of heterochromatin protein 1 (HP1), down-regulates the UPR in the intestine. Inactivation of HPL-2 results in an enhanced resistance to ER stress dependent on the X-box binding protein 1 (XBP-1)/inositol requiring enzyme 1 branch of the UPR and the closely related process of autophagy. Increased resistance to ER stress in animals lacking HPL-2 is associated with increased basal levels of XBP-1 activation and ER chaperone expression under physiological conditions, which may in turn activate an adaptive response known as ER hormesis. HPL-2 expression in intestinal cells is sufficient to rescue stress resistance, whereas expression in neuronal cells negatively influenced the ER stress response through a cell-nonautonomous mechanism. We further show that the retinoblastoma protein homolog LIN-35 and the LIN-13 zinc finger protein act in the same pathway as HPL-2 to limit the ER stress response. Altogether, our results point to multiple functions for HP1 in different cell types to maintain ER homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Retículo Endoplasmático/metabolismo , Hormese , Resposta a Proteínas não Dobradas , Animais , Autofagia , Homólogo 5 da Proteína Cromobox , Citoproteção , Estresse do Retículo Endoplasmático , Intestinos/citologia , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Proteína do Retinoblastoma/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Dedos de Zinco
7.
Cell Mol Life Sci ; 72(19): 3599-620, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26043973

RESUMO

Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Cromatina/fisiologia , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Germinativas/citologia , Modelos Biológicos , Animais , Caenorhabditis elegans , Drosophila , Proteínas de Drosophila/metabolismo , Humanos , Camundongos , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , RNA Polimerase II/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXF/metabolismo , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 108(20): 8305-10, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21527717

RESUMO

Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three core components: RbBP5, Ash2L, and WDR5. It remains unclear how the composition and specificity of these complexes varies between cell types and during development. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RbBP5, Ash2L, and WDR5. Here we show that SET-2 is responsible for the majority of bulk H3K4 methylation at all developmental stages. However, SET-2 and absent, small, or homeotic discs 2 (ASH-2) are differentially required for tri- and dimethylation of H3K4 (H3K4me3 and -me2) in embryos and adult germ cells. In embryos, whereas efficient H3K4me3 requires both SET-2 and ASH-2, H3K4me2 relies mostly on ASH-2. In adult germ cells by contrast, SET-2 serves a major role whereas ASH-2 is dispensable for H3K4me3 and most H3K4me2. Loss of SET-2 results in progressive sterility over several generations, suggesting an important function in the maintenance of a functional germ line. This study demonstrates that individual subunits of SET1-related complexes can show tissue specificity and developmental regulation and establishes C. elegans as a model to study SET1-related complexes in a multicellular organism.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Embrião não Mamífero/metabolismo , Células Germinativas/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Proteínas Nucleares/fisiologia , Animais , Lisina/metabolismo , Metilação , Proteínas de Saccharomyces cerevisiae/fisiologia
9.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38808193

RESUMO

The SET-2 /SET1 histone H3K4 methyltransferase and RNAi pathway components are required to maintain fertility across generations in C. elegans . SET-2 preserves the germline transcriptional program transgenerationally, and RNAi pathways rely on small RNAs to establish and maintain transgenerational gene silencing. We investigated whether the functionality of RNAi-induced transgenerational silencing and the composition of pools of endogenous small RNA are affected by the absence of SET-2 . Our results suggest that defects in RNAi pathways are not responsible for the transcriptional misregulation observed in the absence of SET-2 .

10.
iScience ; 27(5): 109789, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38746662

RESUMO

Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.

11.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893559

RESUMO

Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS-dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fertilidade/genética , Histona-Lisina N-Metiltransferase/deficiência , Longevidade/genética , Proteínas Nucleares/deficiência , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catálise , Ativação Enzimática , Histonas/metabolismo , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
Genesis ; 49(8): 647-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538806

RESUMO

Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Epigenômica , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Metilação , Modelos Biológicos , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo
13.
Chromosome Res ; 18(8): 873-85, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21116703

RESUMO

Specific nuclear domains are nonrandomly positioned within the nuclear space, and this preferential positioning has been shown to play an important role in genome activity and stability. Well-known examples include the organization of repetitive DNA in telomere clusters or in the chromocenter of Drosophila and mammalian cells, which may provide a means to control the availability of general repressors, such as the heterochromatin protein 1 (HP1). We have specifically characterized the intranuclear positioning of in vivo fluorescence of the Caenorhabditis elegans HP1 homologue HPL-2 as a marker for heterochromatin domains in developing embryos. For this purpose, the wavelet transform modulus maxima (WTMM) segmentation method was generalized and adapted to segment the small embryonic cell nuclei in three dimensions. The implementation of a radial distribution algorithm revealed a preferential perinuclear positioning of HPL-2 fluorescence in wild-type embryos compared with the diffuse and homogeneous nuclear fluorescence observed in the lin-13 mutants. For all other genotypes analyzed, the quantitative analysis highlighted various degrees of preferential HPL-2 positioning at the nuclear periphery, which directly correlates with the number of HPL-2 foci previously counted on 2D projections. Using a probabilistic 3D cell nuclear model, we found that any two nuclei having the same number of foci, but with a different 3D probabilistic positioning scheme, can have significantly different counts in the 2D maximum projection, thus showing the deceptive limitations of using techniques of 2D maximum projection foci counts. By this approach, a strong perinuclear positioning of HPL-2 foci was brought into light upon inactivation of conserved chromatin-associated proteins, including the HAT cofactor TRAPP.


Assuntos
Caenorhabditis elegans/embriologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Desenvolvimento Embrionário/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Animais , Caenorhabditis elegans/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Imageamento Tridimensional , Modelos Biológicos , Análise de Ondaletas
14.
Biol Open ; 10(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495210

RESUMO

Auxins are plant growth regulators that influence most aspects of plant development through complex mechanisms. The development of an auxin-inducible degradation (AID) system has enabled rapid, conditional protein depletion in yeast and cultured cells. More recently, the system was successfully adapted to Caenorhabditiselegans to achieve auxin-dependent degradation of targets in all tissues and developmental stages. Whether auxin treatment alone has an impact on nematode physiology is an open question. Here we show that indole-3-acetic acid (IAA), the auxin most commonly used to trigger AID in worms, functions through the conserved IRE-1/XBP-1 branch of the Unfolded Protein Response (UPR) to promote resistance to endoplasmic reticulum (ER) stress. Because the UPR not only plays a central role in restoring ER homeostasis, but also promotes lipid biosynthesis and regulates lifespan, we suggest that extreme caution should be exercised when using the AID system to study these and related processes.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
Cells ; 9(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911802

RESUMO

Deposition of histone H3 lysine 4 (H3K4) methylation at promoters is catalyzed by the SET1/COMPASS complex and is associated with context-dependent effects on gene expression and local changes in chromatin organization. The role of SET1/COMPASS in shaping chromosome architecture has not been investigated. Here we used Caenorhabditis elegans to address this question through a live imaging approach and genetic analysis. Using quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) on germ cells expressing histones eGFP-H2B and mCherry-H2B, we find that SET1/COMPASS influences meiotic chromosome organization, with marked effects on the close proximity between nucleosomes. We further show that inactivation of set-2, encoding the C. elegans SET1 homologue, or CFP-1, encoding the chromatin targeting subunit of COMPASS, enhances germline chromosome organization defects and sterility of condensin-II depleted animals. set-2 loss also aggravates germline defects resulting from conditional inactivation of topoisomerase II, another structural component of chromosomes. Expression profiling of set-2 mutant germlines revealed only minor transcriptional changes, suggesting that the observed effects are at least partly independent of transcription. Altogether, our results are consistent with a role for SET1/COMPASS in shaping meiotic chromosomes in C. elegans, together with the non-histone proteins condensin-II and topoisomerase. Given the high degree of conservation, our findings expand the range of functions attributed to COMPASS and suggest a broader role in genome organization in different species.


Assuntos
Cromatina/metabolismo , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans
17.
Front Cell Dev Biol ; 8: 561791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072747

RESUMO

Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-ß pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-ß/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.

18.
Cells ; 8(4)2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974922

RESUMO

Cellular adaptation to environmental stress relies on a wide range of tightly controlled regulatory mechanisms, including transcription. Changes in chromatin structure and organization accompany the transcriptional response to stress, and in some cases, can impart memory of stress exposure to subsequent generations through mechanisms of epigenetic inheritance. In the budding yeast Saccharomyces cerevisiae, histone post-translational modifications, and in particular histone methylation, have been shown to confer transcriptional memory of exposure to environmental stress conditions through mitotic divisions. Recent evidence from Caenorhabditis elegans also implicates histone methylation in transgenerational inheritance of stress responses, suggesting a more widely conserved role in epigenetic memory.


Assuntos
Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Animais , Caenorhabditis elegans/genética , Epigênese Genética , Células HeLa , Humanos , Padrões de Herança , Metilação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética
19.
Epigenetics ; 9(1): 37-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24162759

RESUMO

RNA silencing processes use exogenous or endogenous RNA molecules to specifically and robustly regulate gene expression. In C. elegans, initial mechanistic descriptions of the different silencing processes focused on posttranscriptional regulation. In this review, we discuss recent work showing that, in this model organism, RNA silencing also controls the transcription of target genes by inducing heterochromatin formation. Specifically, it has been shown that ribonucleoprotein complexes containing small RNAs, either processed from exogenous dsRNA or synthesized from the genome itself, and proteins of the Argonaute family, mediate the deposition of repressive histone marks at the targeted loci. Interestingly, the accumulation of repressive marks is required for the inheritance of the silencing effect and the establishment of an epigenetic memory that discriminates self- from non-self-RNAs.


Assuntos
Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/fisiologia , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
Brief Funct Genomics ; 13(3): 223-34, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24326118

RESUMO

The precise developmental map of the Caenorhabditis elegans cell lineage, as well as a complete genome sequence and feasibility of genetic manipulation make this nematode species highly attractive to study the role of epigenetics during development. Genetic dissection of phenotypical traits, such as formation of egg-laying organs or starvation-resistant dauer larvae, has illustrated how chromatin modifiers may regulate specific cell-fate decisions and behavioral programs. Moreover, the transparent body of C. elegans facilitates non-invasive microscopy to study tissue-specific accumulation of heterochromatin at the nuclear periphery. We also review here recent findings on how small RNA molecules contribute to epigenetic control of gene expression that can be propagated for several generations and eventually determine longevity.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Animais , Cromatina/metabolismo , Longevidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA