Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679207

RESUMO

In micro injection molding, the cavity thickness and surface roughness are the main effects factors of polymer flow in the die designing and affect the quality of molded products significantly. In this study, the effects of cavity thickness and roughness of cavity surface were investigated mainly on polymer flow during molding and on the roughness of molded products. The parts were molded in the cavities with the thickness from 0.05 mm to 0.25 mm and surface roughness from Ra = 46.55 nm to Ra = 462.57 nm, respectively. The filling integrities and roughness replication ratio of molded parts were used to evaluate the statements of polymer flow and microstructure replication during micro injection molding, respectively. The results showed that the filling integrity changing trends in the thinner cavities were obviously different or even opposite to those in the thicker cavities with the changing of cavity surface roughness instead of single trend in the conventional studies. For each cavity surface roughness, the filling integrity showed an upward trend with the increasing cavity thickness. In different cavity thickness, the maximum gap of filling integrity was 23.76 mm, reaching 544.94% from 0.05 mm to 0.25 mm. Additionally, the surface roughness ratio was slightly smaller than one before, reaching the polymer surface roughness limit around Ra = 71.27 nm, which was decided by the nature of the polymer itself. This study proposed the references for the design and fabrication of mold cavities and parts, and saved time and cost in the actual product manufacturing.

2.
Micromachines (Basel) ; 13(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35334673

RESUMO

Revealing forming mechanism of workpiece surface topography plays an important role in improving ultraprecision turning. In this paper, the forming mechanism of the turning workpiece surface topography is analyzed and verified by the theoretical simulation and experiment respectively. First, the factors directly related to the turning process are analyzed, and a volumetric error model is built and discussed, which considered geometric errors, tool geometry, spindle vibrations, feed rate, cut depth, and feed system position change. The vibration mechanism and laws of the spindle system under multi-field coupling is analyzed, and the effect of the spindle axial vibration on the turning surface topography is studied. In addition, influence of coupled vibrations on the turning surface texture is analyzed, and an equivalent machining model is constructed to identify crucial geometric errors of the workpiece surface topography. Finally, a homemade ultraprecision machine tool system is built and used for turning the workpiece surface, and the tested results of the surface topography demonstrate Ra is better, 10 nm and Rv is better, 20 nm. The end face of the workpiece forms periodically fluctuating wave and ripple patterns, and the comparison between theoretical analysis and experimental detection of the surface topography is verified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA