Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Allergy Clin Immunol ; 143(3): 1047-1057.e8, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30017554

RESUMO

BACKGROUND: Classical FcεRI-induced mast cell (MC) activation causes synthesis of arachidonic acid (AA)-derived eicosanoids (leukotriene [LT] C4, prostaglandin [PG] D2, and thromboxane A2), which mediate vascular leak, bronchoconstriction, and effector cell chemotaxis. Little is known about the significance and regulation of eicosanoid generation in response to nonclassical MC activation mechanisms. OBJECTIVES: We sought to determine the regulation and significance of MC-derived eicosanoids synthesized in response to IL-33, a cytokine critical to innate type 2 immunity. METHODS: We used an ex vivo model of mouse bone marrow-derived mast cells and an IL-33-dependent in vivo model of aspirin-exacerbated respiratory disease (AERD). RESULTS: IL-33 potently liberates AA and elicits LTC4, PGD2, and thromboxane A2 production by bone marrow-derived mast cells. Unexpectedly, the constitutive function of COX-1 is required for IL-33 to activate group IVa cytosolic phospholipase A2 with consequent AA release for synthesis of all eicosanoids, including CysLTs. In contrast, COX-1 was dispensable for FcεRI-driven CysLT production. Inhibition of COX-1 prevented IL-33-induced phosphorylation of extracellular signal-related kinase, an upstream effector of cytosolic phospholipase A2, which was restored by exogenous PGH2, implying that the effects of COX-1 required its catalytic function. Administration of a COX-1-selective antagonist to mice completely prevented the generation of both PGD2 and LTC4 in a model of AERD in which MC activation is IL-33 driven. CONCLUSIONS: MC-intrinsic COX-1 amplifies IL-33-induced activation in the setting of innate type 2 immunity and might help explain the phenomenon of therapeutic desensitization to aspirin by nonselective COX inhibitors in patients with AERD.


Assuntos
Asma Induzida por Aspirina/imunologia , Ciclo-Oxigenase 1/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Interleucina-33/imunologia , Mastócitos/imunologia , Proteínas de Membrana/imunologia , Animais , Células Cultivadas , Ciclo-Oxigenase 2/imunologia , Inibidores de Ciclo-Oxigenase/farmacologia , Eicosanoides/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipases A2 Citosólicas/imunologia
2.
Curr Opin Hematol ; 24(1): 23-31, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27820736

RESUMO

PURPOSE OF REVIEW: This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings. RECENT FINDINGS: Platelets are required for the recruitment of neutrophils to sites of inflammation and infection. They fulfil this role largely by enabling contacts of circulating neutrophils with the inflamed blood vessel wall prior to extravasation. Platelets promote both early stages of neutrophil recruitment (tethering, rolling, arrest, firm adhesion) and - as recent work has demonstrated - later stages (intravascular crawling and diapedesis). Recent studies have also begun to identify platelet-signaling pathways that can elicit the underlying interactions between platelets, neutrophils and vascular endothelial cells without stimulating concomitant platelet aggregation and thrombus formation. These pathways include Rho-guanine-nucleotide binding proteins and Rho-guanine-nucleotide exchange factors. SUMMARY: Recent findings have contributed to our burgeoning understanding of the platelet-dependent mechanisms that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research aimed at increasing our knowledge of these mechanisms further. These insights might lead to the development of novel anti-inflammatory drugs that will be useful in a wide range of inflammatory diseases without causing immunodeficiency.


Assuntos
Plaquetas/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Comunicação Celular , Humanos , Inflamação/patologia , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
3.
J Biol Chem ; 291(12): 6359-75, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26792863

RESUMO

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gßγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gßγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Animais , Encéfalo , Células COS , Forma Celular , Extensões da Superfície Celular/metabolismo , Chlorocebus aethiops , Ativação Enzimática , Células HEK293 , Humanos , Camundongos Knockout , Especificidade de Órgãos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
4.
Blood ; 125(7): 1146-58, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25538043

RESUMO

The small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules. Analysis of adhesion molecule expression, neutrophil adhesion, spreading, and migration suggested that these defects were only partially neutrophil-intrinsic and were not obviously involving vascular endothelial cells. Instead, P1V1 and P1V3 platelets recapitulated the impairment of LPS-induced intravascular neutrophil adhesion and recruitment, showing P-Rex and Vav expression in platelets to be crucial. Similarly, during ovalbumin-induced allergic inflammation, pulmonary recruitment of P1V1 and P1V3 eosinophils, monocytes, and lymphocytes was compromised in a platelet-dependent manner, and airway inflammation was essentially abolished, resulting in improved airway responsiveness. Therefore, platelet P-Rex and Vav family Rac-GEFs play important proinflammatory roles in leukocyte recruitment.


Assuntos
Plaquetas/metabolismo , Quimiotaxia de Leucócito/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Inflamação/genética , Inflamação/imunologia , Proteínas Proto-Oncogênicas c-vav/genética , Doença Aguda , Animais , Adesão Celular/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Pneumonia/genética , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-vav/metabolismo
5.
Curr Opin Hematol ; 23(1): 44-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619317

RESUMO

PURPOSE OF REVIEW: The review describes the roles of Rho- and Rap-guanosine triphosphatases (GTPases) and of their activators, guanine-nucleotide exchange factors (GEFs), and inhibitors, GTPase activating proteins (GAPs), in neutrophil recruitment from the blood stream into inflamed tissues, with a focus on recently identified roles in neutrophils, endothelial cells, and platelets. RECENT FINDINGS: Recent studies have identified important roles of Rho- and Rap-GTPases, and of their GEFs and GAPs, in the neutrophil recruitment cascade. These proteins control the upregulation and/or activation of adhesion molecules on the surface of neutrophils, endothelial cells, and platelets, and they alter cell/cell adhesion in the vascular endothelium. This enables the capture of neutrophils from the blood stream, their migration along and through the vessel wall, and their passage into the inflamed tissue. In particular, it has recently become clear that P-Rex and Vav family Rac-GEFs in platelets are crucial for neutrophil recruitment. SUMMARY: These recent findings have contributed greatly to our understanding of the signalling pathways that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research in this field.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Infiltração de Neutrófilos/fisiologia , Neutrófilos/fisiologia , Animais , Plaquetas/metabolismo , Células Endoteliais/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
EMBO J ; 31(14): 3118-29, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22728827

RESUMO

The molecular mechanisms by which receptors regulate the Ras Binding Domains of the PIP3-generating, class I PI3Ks remain poorly understood, despite their importance in a range of biological settings, including tumorigenesis, activation of neutrophils by pro-inflammatory mediators, chemotaxis of Dictyostelium and cell growth in Drosophila. We provide evidence that G protein-coupled receptors (GPCRs) can stimulate PLCb2/b3 and diacylglycerol- dependent activation of the RasGEF, RasGRP4 in neutrophils. The genetic loss of RasGRP4 phenocopies knock-in of a Ras-insensitive version of PI3Kc in its effects on PI3Kc-dependent PIP3 accumulation, PKB activation, chemokinesis and reactive oxygen species (ROS) formation. These results establish a new mechanism by which GPCRs can stimulate Ras, and the broadly important principle that PLCs can control activation of class I PI3Ks.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Neutrófilos/enzimologia , Fosfolipase C beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Ativação Enzimática/fisiologia , Humanos , Camundongos , Camundongos Knockout , Fosfolipase C beta/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Acoplados a Proteínas G/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética , Proteínas ras/genética
7.
Br J Pharmacol ; 181(4): 513-514, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38093587

RESUMO

LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , Receptores Purinérgicos , Humanos
8.
Br J Pharmacol ; 181(4): 580-592, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37442808

RESUMO

Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cß (PLCß) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , Agregação Plaquetária , Humanos , Difosfato de Adenosina/metabolismo , Plaquetas/fisiologia , Transdução de Sinais , Inflamação/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Ativação Plaquetária
9.
Br J Pharmacol ; 181(4): 564-579, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36694432

RESUMO

BACKGROUND AND PURPOSE: Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH: Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS: Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS: Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , NAD , Humanos , Simulação de Acoplamento Molecular , NAD/metabolismo , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Agregação Plaquetária , Inflamação/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
10.
J Biol Chem ; 286(1): 199-207, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21056981

RESUMO

α1-Chimaerin is a neuron-specific member of the Rho GTPase-activating protein family that selectively inactivates the small GTPase Rac. It is known to regulate the structure of dendrites and dendritic spines. We describe here that under basal conditions α1-chimaerin becomes polyubiquitinated and undergoes rapid proteasomal degradation. This degradation is partly dependent on the N-terminal region that is unique to this isoform. Mimicking diacylglycerol (DAG) signaling with a phorbol ester stabilizes endogenous α1-chimaerin against degradation and causes accumulation of the protein. The stabilization requires phorbol ester binding via the C1 domain of the protein and is independent of PKC activity. In addition, overexpression of a constitutively active Rac1 mutant is sufficient to cause an accumulation of α1-chimaerin through a phospholipase C-dependent mechanism, showing that endogenous DAG signaling can also stabilize the protein. These results suggest that signaling via DAG may regulate the abundance of α1-chimaerin under physiological conditions, providing a new model for understanding how its activity could be controlled.


Assuntos
Quimerina 1/química , Quimerina 1/metabolismo , Diglicerídeos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Neurônios/efeitos dos fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Acetato de Tetradecanoilforbol/farmacologia , Ubiquitina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Blood Adv ; 5(16): 3076-3091, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34402884

RESUMO

Streptococcal pneumonia is a worldwide health problem that kills ∼2 million people each year, particularly young children, the elderly, and immunosuppressed individuals. Alveolar macrophages and neutrophils provide the early innate immune response to clear pneumococcus from infected lungs. However, the level of neutrophil involvement is context dependent, both in humans and in mouse models of the disease, influenced by factors such as bacterial load, age, and coinfections. Here, we show that the G protein-coupled receptor (GPCR) adaptor protein norbin (neurochondrin, NCDN), which was hitherto known as a regulator of neuronal function, is a suppressor of neutrophil-mediated innate immunity. Myeloid norbin deficiency improved the immunity of mice to pneumococcal infection by increasing the involvement of neutrophils in clearing the bacteria, without affecting neutrophil recruitment or causing autoinflammation. It also improved immunity during Escherichia coli-induced septic peritonitis. It increased the responsiveness of neutrophils to a range of stimuli, promoting their ability to kill bacteria in a reactive oxygen species-dependent manner, enhancing degranulation, phagocytosis, and the production of reactive oxygen species and neutrophil extracellular traps, raising the cell surface levels of selected GPCRs, and increasing GPCR-dependent Rac and Erk signaling. The Rac guanine-nucleotide exchange factor Prex1, a known effector of norbin, was dispensable for most of these effects, which suggested that norbin controls additional downstream targets. We identified the Rac guanine-nucleotide exchange factor Vav as one of these effectors. In summary, our study presents the GPCR adaptor protein norbin as an immune suppressor that limits the ability of neutrophils to clear bacterial infections.


Assuntos
Neutrófilos , Infecções Pneumocócicas , Animais , Camundongos , Camundongos Knockout , Neuropeptídeos , Receptores Acoplados a Proteínas G
12.
Sci Signal ; 8(360): ra8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25605974

RESUMO

Neutrophils, which migrate toward inflamed sites and kill pathogens by producing reactive oxygen species (ROS), are important in the defense against bacterial and fungal pathogens, but their inappropriate regulation causes various chronic inflammatory diseases. Phosphoinositide 3-kinase γ (PI3Kγ) functions downstream of proinflammatory G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) in neutrophils and is a therapeutic target. In neutrophils, PI3Kγ consists of a p110γ catalytic subunit, which is activated by the guanosine triphosphatase Ras, and either a p84 or p101 regulatory subunit. Loss or inhibition of p110γ or expression of a Ras-insensitive variant p110γ (p110γ(DASAA/DASAA)) impairs PIP3 production, Akt phosphorylation, migration, and ROS formation in response to GPCR activation. The p101 subunit binds to, and mediates PI3Kγ activation by, G protein ßγ subunits, and p101(-/-) neutrophils have a similar phenotype to that of p110γ(-/-) neutrophils, except that ROS responses are normal. We found that p84(-/-) neutrophils displayed reduced GPCR-stimulated PIP3 and Akt signaling, which was indistinguishable from that of p101(-/-) neutrophils. However, p84(-/-) neutrophils produced less ROS and exhibited normal migration in response to GPCR stimulation. These data suggest that p84-containing PI3Kγ controls GPCR-dependent ROS production. Thus, the PI3Kγ regulatory subunits enable PI3Kγ to mediate distinct neutrophil responses, which may occur by targeting PIP3 signaling into spatially distinct domains.


Assuntos
Movimento Celular/imunologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Neutrófilos/imunologia , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Actinas/química , Animais , Western Blotting , Cálcio/metabolismo , Separação Celular/métodos , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Diacilglicerol Quinase , Citometria de Fluxo , Vetores Genéticos/genética , Espectrometria de Massas , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Polimerização , Subunidades Proteicas/genética , Transdução de Sinais/genética
13.
Clin Vaccine Immunol ; 14(5): 593-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17344347

RESUMO

Children who have siblings and/or who attend day care have higher rates of nasopharyngeal colonization with pneumococci than lone children do. Pneumococcal colonization is usually asymptomatic but is a prerequisite for invasive disease. We studied the effect of social mixing with other children on immunity to a pneumococcal vaccine. One hundred sixty children aged 1 year were immunized with a 7-valent conjugate pneumococcal vaccine. A blood sample was obtained before and 9 to 11 days after the vaccine. The concentration and avidity of antibody against vaccine pneumococcal serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) were studied in relation to pneumococcal carriage rate and measures of social mixing. Children with increased social mixing had higher antibody concentrations against serotypes 4, 9V, 14, and 23F than lone children did. The least-carried serotype, serotype 4, was the one of the most immunogenic. This contrasts with serotype 6B, the most common nasopharyngeal isolate but the least immunogenic. Social mixing in infancy enhances the immune response to a Streptococcus pneumoniae polysaccharide-protein conjugate vaccine at 1 year of age. Exposure to pneumococci in the first year of life may induce immunological priming. An alternative explanation is that differences in immunological experience, such as increased exposure to respiratory viral infections in early childhood, alters the response to vaccines perhaps by affecting the balance between Th1 and Th2 cytokines. The low immunogenicity of serotype 6B polysaccharide might make conditions more favorable for carriage of the 6B organism and explain why 6B pneumococci were more frequently isolated than other serotypes.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Portador Sadio/imunologia , Creches , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Relações Interpessoais , Masculino , Nasofaringe/microbiologia , Irmãos , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA