Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(23): 4376-4393.e18, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318920

RESUMO

The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais
2.
Nat Rev Mol Cell Biol ; 24(12): 895-911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626124

RESUMO

Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.


Assuntos
Autorrenovação Celular , Transdução de Sinais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Carcinogênese , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
3.
Cell ; 164(3): 406-19, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824654

RESUMO

The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings.


Assuntos
Drosophila melanogaster/imunologia , Imunidade Inata , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Escherichia coli/fisiologia , Corpo Adiposo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Larva/metabolismo , Masculino , Pectobacterium carotovorum/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus aureus/fisiologia , Receptores Toll-Like/metabolismo
4.
Genes Dev ; 36(21-24): 1119-1128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36522128

RESUMO

The Hippo-YAP signaling pathway plays a critical role in development, homeostasis, regeneration, and tumorigenesis by converging on YAP, a coactivator for the TEAD family DNA-binding transcription factors, to regulate downstream transcription programs. Given its pivotal role as the nuclear effector of the Hippo pathway, YAP is indispensable in multiple developmental and tissue contexts. Here we report that the essentiality of YAP in liver and lung development can be genetically bypassed by simultaneous inactivation of the TEAD corepressor VGLL4. This striking antagonistic epistasis suggests that the major physiological function of YAP is to antagonize VGLL4. We further show that the YAP-VGLL4 antagonism plays a widespread role in regulating Hippo pathway output beyond normal development, as inactivation of Vgll4 dramatically enhanced intrahepatic cholangiocarcinoma formation in Nf2-deficient livers and ameliorated CCl4-induced damage in normal livers. Interestingly, Vgll4 expression is temporally regulated in development and regeneration and, in certain contexts, provides a better indication of overall Hippo pathway output than YAP phosphorylation. Together, these findings highlight the central importance of VGLL4-mediated transcriptional repression in Hippo pathway regulation and inform potential strategies to modulate Hippo signaling in cancer and regenerative medicine.


Assuntos
Via de Sinalização Hippo , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição de Domínio TEA
5.
Genes Dev ; 35(7-8): 495-511, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766984

RESUMO

Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Fusão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
6.
Trends Biochem Sci ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729842

RESUMO

Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function Hippo pathway of cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.

7.
Cell ; 154(6): 1342-55, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24012335

RESUMO

Although Merlin/NF2 was discovered two decades ago as a tumor suppressor underlying Neurofibromatosis type II, its precise molecular mechanism remains poorly understood. Recent studies in Drosophila revealed a potential link between Merlin and the Hippo pathway by placing Merlin genetically upstream of the kinase Hpo/Mst. In contrast to the commonly depicted linear model of Merlin functioning through Hpo/Mst, here we show that in both Drosophila and mammals, Merlin promotes downstream Hippo signaling without activating the intrinsic kinase activity of Hpo/Mst. Instead, Merlin directly binds and recruits the effector kinase Wts/Lats to the plasma membrane. Membrane recruitment, in turn, promotes Wts phosphorylation by the Hpo-Sav kinase complex. We further show that disruption of the actin cytoskeleton promotes Merlin-Wts interactions, which implicates Merlin in actin-mediated regulation of Hippo signaling. Our findings elucidate an important molecular function of Merlin and highlight the plasma membrane as a critical subcellular compartment for Hippo signal transduction.


Assuntos
Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Neurofibromina 2/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Evolução Biológica , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência
8.
Genes Dev ; 32(11-12): 781-793, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29891559

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder caused by mutations in PKD1 or PKD2 and affects one in 500-1000 humans. Limited treatment is currently available for ADPKD. Here we identify the Hippo signaling effector YAP and its transcriptional target, c-Myc, as promoters of cystic kidney pathogenesis. While transgenic overexpression of YAP promotes proliferation and tubule dilation in mouse kidneys, loss of YAP/TAZ or c-Myc suppresses cystogenesis in a mouse ADPKD model resulting from Pkd1 deficiency. Through a comprehensive kinase inhibitor screen based on a novel three-dimensional (3D) culture of Pkd1 mutant mouse kidney cells, we identified a signaling pathway involving the RhoGEF (guanine nucleotide exchange factor) LARG, the small GTPase RhoA, and the RhoA effector Rho-associated kinase (ROCK) as a critical signaling module between PKD1 and YAP. Further corroborating its physiological importance, inhibition of RhoA signaling suppresses cystogenesis in 3D culture of Pkd1 mutant kidney cells as well as Pkd1 mutant mouse kidneys in vivo. Taken together, our findings implicate the RhoA-YAP-c-Myc signaling axis as a critical mediator and potential drug target in ADPKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Rim/fisiopatologia , Fosfoproteínas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Rim/citologia , Rim/patologia , Camundongos , Fosfoproteínas/genética , Doenças Renais Policísticas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
9.
Cell ; 139(4): 757-69, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914168

RESUMO

TGF-beta and BMP receptor kinases activate Smad transcription factors by C-terminal phosphorylation. We have identified a subsequent agonist-induced phosphorylation that plays a central dual role in Smad transcriptional activation and turnover. As receptor-activated Smads form transcriptional complexes, they are phosphorylated at an interdomain linker region by CDK8 and CDK9, which are components of transcriptional mediator and elongation complexes. These phosphorylations promote Smad transcriptional action, which in the case of Smad1 is mediated by the recruitment of YAP to the phosphorylated linker sites. An effector of the highly conserved Hippo organ size control pathway, YAP supports Smad1-dependent transcription and is required for BMP suppression of neural differentiation of mouse embryonic stem cells. The phosphorylated linker is ultimately recognized by specific ubiquitin ligases, leading to proteasome-mediated turnover of activated Smad proteins. Thus, nuclear CDK8/9 drive a cycle of Smad utilization and disposal that is an integral part of canonical BMP and TGF-beta pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas Smad/genética , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Inibição de Contato , Embrião de Mamíferos/citologia , Humanos , Camundongos , Tamanho do Órgão , Fosfoproteínas/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas Smad/química , Proteína Smad1/genética , Proteínas de Sinalização YAP
10.
Dev Biol ; 487: 1-9, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35405135

RESUMO

The development of a functional organ requires not only patterning mechanisms that confer proper identities to individual cells, but also growth-regulatory mechanisms that specify the final size of the organ. At the turn of the 21st century, comprehensive genetic screens in model organisms had successfully uncovered the major signaling pathways that mediate pattern formation in metazoans. In contrast, signaling pathways dedicated to growth control were less explored. The past two decades has witnessed the emergence of the Hippo signaling pathway as a central mediator of organ size control through coordinated regulation of cell proliferation and apoptosis. Here I reflect on the early discoveries in Drosophila that elucidated the core kinase cascade and transcriptional machinery of the Hippo pathway, highlight its deep evolutionary conservation from humans to unicellular relatives of metazoan, and discuss the complex regulation of Hippo signaling by upstream inputs. This historical perspective underscores the importance of model organisms in uncovering fundamental and universal mechanisms of life processes.


Assuntos
Proteínas de Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/metabolismo , Via de Sinalização Hippo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética
11.
Genes Dev ; 29(14): 1493-506, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193883

RESUMO

Mutations in Adenomatous polyposis coli (APC) underlie familial adenomatous polyposis (FAP), an inherited cancer syndrome characterized by the widespread development of colorectal polyps. APC is best known as a scaffold protein in the ß-catenin destruction complex, whose activity is antagonized by canonical Wnt signaling. Whether other effector pathways mediate APC's tumor suppressor function is less clear. Here we report that activation of YAP, the downstream effector of the Hippo signaling pathway, is a general hallmark of tubular adenomas from FAP patients. We show that APC functions as a scaffold protein that facilitates the Hippo kinase cascade by interacting with Sav1 and Lats1. Consistent with the molecular link between APC and the Hippo signaling pathway, genetic analysis reveals that YAP is absolutely required for the development of APC-deficient adenomas. These findings establish Hippo-YAP signaling as a critical effector pathway downstream from APC, independent from its involvement in the ß-catenin destruction complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/fisiopatologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Adenoma/enzimologia , Adenoma/fisiopatologia , Polipose Adenomatosa do Colo/enzimologia , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Ciclo Celular , Células Cultivadas , Via de Sinalização Hippo , Humanos , Intestinos/fisiopatologia , Camundongos , Fatores de Transcrição , Proteínas de Sinalização YAP , beta Catenina/metabolismo
12.
Genes Dev ; 29(13): 1416-31, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26108669

RESUMO

The Mst-Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2-Mob1 and phospho-Mob1-Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mob1 mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1 acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Cristalização , Drosophila melanogaster , Via de Sinalização Hippo , Humanos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Serina-Treonina Quinase 3
13.
Genes Dev ; 29(12): 1285-97, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109051

RESUMO

The Hippo signaling pathway converges on YAP to regulate growth, differentiation, and regeneration. Previous studies with overexpressed proteins have shown that YAP is phosphorylated by its upstream kinase, Lats1/2, on multiple sites, including an evolutionarily conserved 14-3-3-binding site whose phosphorylation is believed to inhibit YAP by excluding it from the nucleus. Indeed, nuclear localization of YAP or decreased YAP phosphorylation at this site (S168 in Drosophila, S127 in humans, and S112 in mice) is widely used in current literature as a surrogate of YAP activation even though the physiological importance of this phosphorylation event in regulating endogenous YAP activity has not been defined. Here we address this question by introducing a Yap(S112A) knock-in mutation in the endogenous Yap locus. The Yap(S112A) mice are surprisingly normal despite nuclear localization of the mutant YAP protein in vivo and profound defects in cytoplasmic translocation in vitro. Interestingly, the mutant Yap(S112A) mice show a compensatory decrease in YAP protein levels due to increased phosphorylation at a mammalian-specific phosphodegron site on YAP. These findings reveal a robust homeostatic mechanism that maintains physiological levels of YAP activity and caution against the assumptive use of YAP localization alone as a surrogate of YAP activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Homeostase/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Via de Sinalização Hippo , Homeostase/genética , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação , Ligação Proteica , Transporte Proteico/genética , Proteínas de Sinalização YAP
14.
Genes Dev ; 29(12): 1271-84, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109050

RESUMO

YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are major downstream effectors of the Hippo pathway that influences tissue homeostasis, organ size, and cancer development. Aberrant hyperactivation of YAP/TAZ causes tissue overgrowth and tumorigenesis, whereas their inactivation impairs tissue development and regeneration. Dynamic and precise control of YAP/TAZ activity is thus important to ensure proper physiological regulation and homeostasis of the cells. Here, we show that YAP/TAZ activation results in activation of their negative regulators, LATS1/2 (large tumor suppressor 1/2) kinases, to constitute a negative feedback loop of the Hippo pathway in both cultured cells and mouse tissues. YAP/TAZ in complex with the transcription factor TEAD (TEA domain family member) directly induce LATS2 expression. Furthermore, YAP/TAZ also stimulate the kinase activity of LATS1/2 through inducing NF2 (neurofibromin 2). This feedback regulation is responsible for the transient activation of YAP upon lysophosphatidic acid (LPA) stimulation and the inhibition of YAP-induced cell migration. Thus, this LATS-mediated feedback loop provides an efficient mechanism to establish the robustness and homeostasis of YAP/TAZ regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retroalimentação Fisiológica/fisiologia , Homeostase/fisiologia , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Movimento Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/fisiologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Via de Sinalização Hippo , Homeostase/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
15.
Genes Dev ; 28(5): 432-7, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24589775

RESUMO

Despite recent progress, the physiological role of Hippo signaling in mammary gland development and tumorigenesis remains poorly understood. Here we show that the Hippo pathway is functionally dispensable in virgin mammary glands but specifically required during pregnancy. In contrast to many other tissues, hyperactivation of YAP in mammary epithelia does not induce hyperplasia but leads to defects in terminal differentiation. Interestingly, loss of YAP causes no obvious defects in virgin mammary glands but potently suppresses oncogene-induced mammary tumors. The selective requirement for YAP in oncogenic growth highlights the potential of YAP inhibitors as molecular targeted therapies against breast cancers.


Assuntos
Carcinogênese/patologia , Diferenciação Celular , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Feminino , Via de Sinalização Hippo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oncogenes/genética , Gravidez , Tempo
16.
J Biol Chem ; 295(7): 1889-1897, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31862735

RESUMO

Sphingolipids (SLs) are structurally diverse lipids that are defined by the presence of a long-chain base (LCB) backbone. Typically, LCBs contain a single Δ4E double bond (DB) (mostly d18:1), whereas the dienic LCB sphingadienine (d18:2) contains a second DB at the Δ14Z position. The enzyme introducing the Δ14Z DB is unknown. We analyzed the LCB plasma profile in a gender-, age-, and BMI-matched subgroup of the CoLaus cohort (n = 658). Sphingadienine levels showed a significant association with gender, being on average ∼30% higher in females. A genome-wide association study (GWAS) revealed variants in the fatty acid desaturase 3 (FADS3) gene to be significantly associated with the plasma d18:2/d18:1 ratio (p = -log 7.9). Metabolic labeling assays, FADS3 overexpression and knockdown approaches, and plasma LCB profiling in FADS3-deficient mice confirmed that FADS3 is a bona fide LCB desaturase and required for the introduction of the Δ14Z double bond. Moreover, we showed that FADS3 is required for the conversion of the atypical cytotoxic 1-deoxysphinganine (1-deoxySA, m18:0) to 1-deoxysphingosine (1-deoxySO, m18:1). HEK293 cells overexpressing FADS3 were more resistant to m18:0 toxicity than WT cells. In summary, using a combination of metabolic profiling and GWAS, we identified FADS3 to be essential for forming Δ14Z DB containing LCBs, such as d18:2 and m18:1. Our results unravel FADS3 as a Δ14Z LCB desaturase, thereby disclosing the last missing enzyme of the SL de novo synthesis pathway.


Assuntos
Ácidos Graxos Dessaturases/genética , Estudo de Associação Genômica Ampla , Esfingolipídeos/genética , Animais , Ácidos Graxos Dessaturases/sangue , Células HEK293 , Humanos , Lipídeos/genética , Camundongos , Esfingolipídeos/sangue , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Coluna Vertebral/metabolismo
17.
Development ; 145(4)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467233

RESUMO

Genetic studies in Drosophila have been instrumental in characterizing the Hippo pathway, which converges on the co-activator Yorkie to regulate target gene transcription. A routinely used strategy to interrogate upstream regulators of Yorkie involves the examination of selected Hippo target genes upon loss or gain of function of a suspected pathway regulator. A caveat with this strategy is that aberrant expression of a given Hippo target per se does not distinguish whether it is caused by changes in Yorkie or Yorkie-independent inputs converging on the same target gene. Building on previous findings that the DNA-binding transcription factor Scalloped mediates both Yorkie overexpression and loss-of-function phenotypes yet is itself dispensable for normal eye development, we describe a simple strategy to distinguish these possibilities by analyzing double-mutant clones of scalloped and a suspected Yorkie regulator. We provide proof of principle that this strategy can be used effectively to validate canonical Yorkie regulators and to exclude proteins that impact target expression independent of Yorkie. The described methodology and reagents should facilitate efforts to assess the expanding repertoire of proteins implicated in regulation of Yorkie activity.


Assuntos
Proteínas de Drosophila/metabolismo , Epistasia Genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Clonagem de Organismos , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Reprodutibilidade dos Testes , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
18.
Genes Dev ; 27(11): 1223-32, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752589

RESUMO

The Hippo tumor suppressor pathway plays an important role in tissue homeostasis that ensures development of functional organs at proper size. The YAP transcription coactivator is a major effector of the Hippo pathway and is phosphorylated and inactivated by the Hippo pathway kinases Lats1/2. It has recently been shown that YAP activity is regulated by G-protein-coupled receptor signaling. Here we demonstrate that cyclic adenosine monophosphate (cAMP), a second messenger downstream from Gαs-coupled receptors, acts through protein kinase A (PKA) and Rho GTPases to stimulate Lats kinases and YAP phosphorylation. We also show that inactivation of YAP is crucial for PKA-induced adipogenesis. In addition, PKA activation in Drosophila inhibits the expression of Yorki (Yki, a YAP ortholog) target genes involved in cell proliferation and death. Taken together, our study demonstrates that Hippo-YAP is a key signaling branch of cAMP and PKA and reveals new insight into mechanisms of PKA in regulating a broad range of cellular functions.


Assuntos
Diferenciação Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Aciltransferases , Adipogenia , Animais , Linhagem Celular , Proliferação de Células , AMP Cíclico/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Ativação Enzimática , Humanos , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosforilação , Sistemas do Segundo Mensageiro/fisiologia , Serina-Treonina Quinase 3 , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/metabolismo
19.
PLoS Biol ; 15(3): e2000949, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248965

RESUMO

During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches.


Assuntos
Linhagem da Célula , Lisofosfolipídeos/metabolismo , Pâncreas/citologia , Transdução de Sinais , Esfingosina/análogos & derivados , Células Acinares/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Padronização Corporal , Proteínas de Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Modelos Biológicos , Fosfoproteínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Subunidades Proteicas/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores Notch/metabolismo , Esfingosina/metabolismo , Células-Tronco/citologia , Proteínas de Sinalização YAP
20.
Circ Res ; 123(1): 43-56, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29794022

RESUMO

RATIONALE: Microvascular inflammation and endothelial dysfunction secondary to unchecked activation of endothelium play a critical role in the pathophysiology of sepsis and organ failure. The intrinsic signaling mechanisms responsible for dampening excessive activation of endothelial cells are not completely understood. OBJECTIVE: To determine the central role of YAP (Yes-associated protein), the major transcriptional coactivator of the Hippo pathway, in modulating the strength and magnitude of endothelial activation and vascular inflammation. METHODS AND RESULTS: Endothelial-specific YAP knockout mice showed increased basal expression of E-selectin and ICAM (intercellular adhesion molecule)-1 in endothelial cells, a greater number of adherent neutrophils in postcapillary venules and increased neutrophil counts in bronchoalveolar lavage fluid. Lipopolysaccharide challenge of these mice augmented NF-κB (nuclear factor-κB) activation, expression of endothelial adhesion proteins, neutrophil and monocyte adhesion to cremaster muscle venules, transendothelial neutrophil migration, and lung inflammatory injury. Deletion of YAP in endothelial cells also markedly augmented the inflammatory response and cardiovascular dysfunction in a polymicrobial sepsis model induced by cecal ligation and puncture. YAP functioned by interacting with the E3 ubiquitin-protein ligase TLR (Toll-like receptor) signaling adaptor TRAF6 (tumor necrosis factor receptor-associated factor 6) to ubiquitinate TRAF6, and thus promoted TRAF6 degradation and modification resulting in inhibition of NF-κB activation. TRAF6 depletion in endothelial cells rescued the augmented inflammatory phenotype in mice with endothelial cell-specific deletion of YAP. CONCLUSIONS: YAP modulates the activation of endothelial cells and suppresses vascular inflammation through preventing TRAF6-mediated NF-κB activation and is hence essential for limiting the severity of sepsis-induced inflammation and organ failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/fisiopatologia , Fosfoproteínas/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo , Vasculite/etiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Permeabilidade Capilar , Adesão Celular , Proteínas de Ciclo Celular , Selectina E/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Microvasos , Monócitos/fisiologia , NF-kappa B/metabolismo , Neutrófilos/citologia , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Sepse/complicações , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Vênulas/citologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA